Journal of the American Chemical Society
Page 12 of 15
Energy under grant number NSF/CHE-0822838. Use of the Ad-
(19) King, E. R.; Sazama, G. T.; Betley, T. A., Co(III) Imidos
1
2
3
4
5
6
7
vanced Photon Source was supported by the U.S. Department of
Energy, Office of Science, Office of Basic Energy Sciences, un-
der Contract No. DE-AC02-06CH11357. Collection of low-
temperature UV/Vis spectra were obtained at the Center for Na-
noscale Systems (CNS, Harvard University), a member of the
National Nanotechnology Coordinated Infrastructure Network
(NNCI), which is supported by the National Science Foundation
under NSF award no. 1541959.
Exhibiting Spin Crossover and C–H Bond Activation. J. Am.
Chem. Soc. 2012, 134, 17858.
(20) Rieth, R. D.; Mankad, N. P.; Calimano, E.; Sadighi, J. P.,
Palladium-Catalyzed Cross-Coupling of Pyrrole Anions with Aryl
Chlorides, Bromides, and Iodides. Org. Lett. 2004, 6, 3981.
(21) Chang, C. J.; Deng, Y.; Heyduk, A. F.; Chang, C. K.;
Nocera, D. G., Xanthene-Bridged Cofacial Bisporphyrins. Inorg.
Chem. 2000, 39, 959.
(22) Meyer, E. M.; Gambarotta, S.; Floriani, C.; Chiesi-Villa, A.;
Guastini, C., Polynuclear Aryl Derivatives of Group 11 Metals.
Synthesis, Solid State-Solution Structural Relationship, and
Reactivity with Phosphines. Organometallics 1989, 8, 1067.
(23) Pauling, L. The Nature of the Chemical Bond; Cornell
University Press Ithaca, NY, 1960; Vol. 260.
(24) Laitar, D. S. Synthetic and catalytic studies of Group 11 N-
heterocyclic carbene complexes. Ph.D. Dissertation, Massachu-
setts Institute of Technology, Cambridge, 2006.
(25)Walroth, R. C.; Lukens, J. T.; MacMillan, S. N.; Finkelstein,
K. D.; Lancaster, K. M., Spectroscopic Evidence for a 3d10
Ground State Electronic Configuration and Ligand Field
Inversion in [Cu(CF3)4]1–. J. Am. Chem. Soc. 2016, 138, 1922.
(26) Walroth, R. C.; Miles, K. C.; Lukens, J. T.; MacMillan, S.
N.; Stahl, S. S.; Lancaster, K. M., Electronic Structural Analysis
of Copper(II)–TEMPO/ABNO Complexes Provides Evidence for
Copper(I)–oxoammonium Character. J. Am. Chem. Soc. 2017,
139, 13507.
(27) Walroth, R. C.; Uebler, J. W. H.; Lancaster, K. M., Probing
Cui in Homogeneous Catalysis Using High-Energy-Resolution
Fluorescence-Detected X-Ray Absorption Spectroscopy. Chem.
Comm. 2015, 51, 9864.
(28) Tomson, N. C.; Williams, K. D.; Dai, X.; Sproules, S.;
DeBeer, S.; Warren, T. H.; Wieghardt, K., Re-Evaluating the Cu
K Pre-Edge Xas Transition in Complexes with Covalent Metal–
Ligand Interactions. Chem. Sci. 2015, 6, 2474.
(29) Kau, L. S.; Spira-Solomon, D. J.; Penner-Hahn, J. E.;
Hodgson, K. O.; Solomon, E. I., X-Ray Absorption Edge
Determination of the Oxidation State and Coordination Number
of Copper. Application to the Type 3 Site in Rhus vernicifera
Laccase and Its Reaction with Oxygen. J. Am. Chem. Soc. 1987,
109, 6433.
(30) George, S. J.; Lowery, M. D.; Solomon, E. I.; Cramer, S. P.,
Copper L-Edge Spectral Studies: A Direct Experimental Probe of
the Ground-State Covalency in the Blue Copper Site in
Plastocyanin. J. Am. Chem. Soc. 1993, 115, 2968.
(31) Wilding, M. J. T.; Iovan, D. A.; Wrobel, A. T.; Lukens, J. T.;
MacMillan, S. N.; Lancaster, K. M.; Betley, T. A., Direct
Comparison of C–H Bond Amination Efficacy through
Manipulation of Nitrogen-Valence Centered Redox: Imido Versus
Iminyl. J. Am. Chem. Soc. 2017, 139, 14757.
(32) Dong, Y.; Lukens, J.; Clarke, R. M.; Zheng, S.-L.; Lancaster,
K.; Betley, T., Synthesis, Characterization and C–H Amination
Reactivity of Nickel Iminyl Complexes. Chem. Sci. 2020,
Advance Article, doi: 10.1039/C9SC04879K.
(33) Wigley, D. E., Organoimido Complexes of the Transition
Metals. In Prog. Inorg. Chem; Karlin, K. D., Ed.; Wiley, 2007,
42, 239-482.
(34) Nugent, W. A.; Haymore, B. L., Transition Metal Complexes
Containing Organoimido (NR) and Related Ligands. Coord.
Chem. Rev. 1980, 31, 123.
(35) Wiese, S.; McAfee, J. L.; Pahls, D. R.; McMullin, C. L.;
Cundari, T. R.; Warren, T. H., C–H Functionalization Reactivity
of a Nickel–Imide. J. Am. Chem. Soc. 2012, 134, 10114.
(36) Laskowski, C. A.; Miller, A. J. M.; Hillhouse, G. L.;
Cundari, T. R., A Two-Coordinate Nickel Imido Complex That
Effects C−H Amination. J. Am. Chem. Soc. 2011, 133, 771.
(37) Berry, J. F., Terminal Nitrido and Imido Complexes of the
Late Transition Metals. Comment Inorg. Chem. 2009, 30, 28.
8
9
References
(1) Labinger, J. A.; Bercaw, J. E., Understanding and Exploiting
C–H Bond Activation. Nature 2002, 417, 507.
(2) Godula, K.; Sames, D., C–H Bond Functionalization in
Complex Organic Synthesis. Science 2006, 312, 67.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(3) Bergman, R. G., C–H Activation. Nature 2007, 446, 391.
(4) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K., C–H Bond
Functionalization: Emerging Synthetic Tools for Natural Products
and Pharmaceuticals. Angew. Chem. Int. Ed. 2012, 51, 8960.
(5) Badiei, Y. M.; Krishnaswamy, A.; Melzer, M. M.; Warren,
T. H., Transient Terminal Cu−Nitrene Intermediates from
Discrete Dicopper Nitrenes. J. Am. Chem. Soc. 2006, 128, 15056.
(6) Badiei, Y. M.; Dinescu, A.; Dai, X.; Palomino, R. M.;
Heinemann, F. W.; Cundari, T. R.; Warren, T. H., Copper–
Nitrene Complexes in Catalytic C–H Amination. Angew. Chem.
Int. Ed. 2008, 47, 9961.
(7) Aguila, M. J. B.; Badiei, Y. M.; Warren, T. H., Mechanistic
Insights into C–H Amination Via Dicopper Nitrenes. J. Am.
Chem. Soc. 2013, 135, 9399.
(8) Bakhoda, A.; Jiang, Q.; Bertke, J. A.; Cundari, T. R.;
Warren, T. H., Elusive Terminal Copper Arylnitrene
Intermediates. Angew. Chem. Int. Ed. 2017, 56, 6426.
(9) Carsch, K. M.; DiMucci, I. M.; Iovan, D. A.; Li, A.; Zheng,
S.-L.; Titus, C. J.; Lee, S. J.; Irwin, K. D.; Nordlund, D.;
Lancaster, K. M.; Betley, T. A., Synthesis of a Copper-Supported
Triplet Nitrene Complex Pertinent to Copper-Catalyzed
Amination. Science 2019, 365, 1138.
(10) Groothaert, M. H.; Smeets, P. J.; Sels, B. F.; Jacobs, P. A.;
Schoonheydt, R. A., Selective Oxidation of Methane by the
Bis(μ-oxo)Dicopper Core Stabilized on ZSM-5 and Mordenite
Zeolites. J. Am. Chem. Soc. 2005, 127, 1394.
(11) Vanelderen, P.; Hadt, R. G.; Smeets, P. J.; Solomon, E. I.;
Schoonheydt, R. A.; Sels, B. F., Cu-ZSM-5: A Biomimetic
Inorganic Model for Methane Oxidation. J. Catal. 2011, 284, 157.
(12) Woertink, J. S.; Smeets, P. J.; Groothaert, M. H.; Vance, M.
A.; Sels, B. F.; Schoonheydt, R. A.; Solomon, E. I., A [Cu2O]2+
Core in Cu-ZSM-5, the Active Site in the Oxidation of Methane
to Methanol. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 18908.
(13) Johnson, E. J.; Kleinlein, C.; Musgrave, R. A.; Betley, T. A.,
Diiron Oxo Reactivity in a Weak-Field Environment. Chem. Sci.
2019, 10, 6304.
(14) Rosenthal, J.; Pistorio, B. J.; Chng, L. L.; Nocera, D. G.,
Aerobic Catalytic Photooxidation of Olefins by an Electron-
Deficient Pacman Bisiron(III) μ-oxo Porphyrin. J. Org. Chem.
2005, 70, 1885.
(15) Rosenthal, J.; Luckett, T. D.; Hodgkiss, J. M.; Nocera, D. G.,
Photocatalytic Oxidation of Hydrocarbons by a Bis-Iron(III)-μ-
oxo Pacman Porphyrin Using O2 and Visible Light. J. Am. Chem.
Soc. 2006, 128, 6546.
(16) Deng, Y.; Chang, C. J.; Nocera, D. G., Direct Observation of
the “Pac-Man” Effect from Dibenzofuran-Bridged Cofacial
Bisporphyrins. J. Am. Chem. Soc. 2000, 122, 410.
(17) Wilding, M. J. T.; Iovan, D. A.; Betley, T. A., High-Spin
Iron Imido Complexes Competent for C–H Bond Amination. J.
Am. Chem. Soc. 2017, 139, 12043.
(18) Kleinlein, C.; Zheng, S.-L.; Betley, T. A., Ground State and
Excited State Tuning in Ferric Dipyrrin Complexes Promoted by
Ancillary Ligand Exchange. Inorg. Chem. 2017, 56, 5892.
ACS Paragon Plus Environment
12