Organic Letters
Letter
Spiewak, A. M.; Johnson, K. A.; DiBenedetto, T. A.; Kim, S.; Ackerman,
L. K. G.; Weix, D. J. J. Am. Chem. Soc. 2016, 138, 5016. (c) Xue, W.;
Oestreich, M. Angew. Chem., Int. Ed. 2017, 56, 11649.
absorption onset of the mixture of stoichiometric reaction
around 450 nm (Figure 3c).12 The absorption is affected by the
absence of Xantphos, but not affected by the absence of
substrates. N-(Acyloxy)phthalimide itself has no absorption in
the wavelength range of blue LED irradiation. The UV−vis
absorption experiments show that the Pd intermediate is indeed
excited by photoirradiation of blue LEDs.23
In summary, we discovered a Pd catalyst that can be
photoexcited by irradiation with blue LEDs to enable the
decarboxylative alkyl Heck reaction of N-(acyloxy)phthalimide
with vinyl (hetero)arenes at rt. With this reaction in hand, a
broad scope of aliphatic carboxylic acids can now be used as alkyl
donors in alkyl Heck type reactions. We also discovered a new
activation mode of aliphatic N-(acyloxy)phthalimide by a
photoexcited Pd catalyst to generate alkyl palladium species.
These new discoveries, along with the irradiation effect to
suppress undesired β-H elimination, are expected to inspire the
exploration of new alkylation reactions catalyzed by palladium,
such as C−H alkylation and alkylation of heteroatoms.
(7) (a) Qin, T.; Cornella, J.; Li, C.; Malins, L.; Edwards, J. T.;
Kawamura, S.; Maxwell, B. D.; Eastgate, M. D.; Baran, P. S. Science 2016,
352, 801. (b) Edwards, J. T.; Merchant, R. R.; McClymont, K. S.;
Knouse, K. W.; Qin, T.; Malins, L. R.; Vokits, B.; Shaw, S. A.; Bao, D.-H.;
Wei, F.-L.; Zhou, T.; Eastgate, M. D.; Baran, P. S. Nature 2017, 545, 213.
(8) (a) Cornella, J.; Edwards, J. T.; Qin, T.; Kawamura, S.; Wang, J.;
Pan, C.-M.; Gianatassio, R.; Schmidt, M.; Eastgate, M. D.; Baran, P. S. J.
Am. Chem. Soc. 2016, 138, 2174. (b) Wang, J.; Qin, T.; Chen, T.-G.;
Wimmer, L.; Edwards, J. T.; Cornella, J.; Vokits, B.; Shaw, S. A.; Baran, P.
S. Angew. Chem., Int. Ed. 2016, 55, 9676. (c) Toriyama, F.; Cornella, J.;
Wimmer, L.; Chen, T.-G.; Dixon, D. D.; Creech, G.; Baran, P. S. J. Am.
Chem. Soc. 2016, 138, 11132.
(9) Li, C.; Wang, J.; Barton, L. M.; Yum, S.; Tian, M.; Peters, D. S.;
Kumar, M.; Yu, A. W.; Johnson, K. A.; Chatterjee, A. K.; Yan, M.; Baran,
P. S. Science 2017, 356, eaam7355.
(10) Koga, N.; Obara, S.; Kitaura, K.; Morokuma, K. J. Am. Chem. Soc.
1985, 107, 7109.
(11) Lin, B.-L.; Liu, L.; Fu, Y.; Luo, S.-W.; Chen, Q.; Guo, Q.-X.
Organometallics 2004, 23, 2114.
(12) Wang, G.-Z.; Shang, R.; Cheng, W.-M.; Fu, Y. J. Am. Chem. Soc.
2017, 139, 18307.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
(13) Kurandina, D.; Parasram, M.; Gevorgyan, V. Angew. Chem., Int. Ed.
2017, 56, 14212. It should be mentioned that n-decyl iodide and
cyclohexyl iodide were also demonstrated as substrates in this work.
(14) For irradiation-excited Pd catalysis, see: (a) Parasram, M.;
Chuentragool, P.; Sarkar, D.; Gevorgyan, V. J. Am. Chem. Soc. 2016, 138,
6340. (b) Parasram, M.; Chuentragool, P.; Wang, Y.; Shi, Y.; Gevorgyan,
V. J. Am. Chem. Soc. 2017, 139, 14857.
(15) Isse, A. A.; Lin, C. Y.; Coote, M. L.; Gennaro, A. J. Phys. Chem. B
2011, 115, 678.
(16) Pratsch, G.; Lackner, G. L.; Overman, L. E. J. Org. Chem. 2015, 80,
Experimental details and characterization data (PDF)
AUTHOR INFORMATION
Corresponding Authors
■
6025.
(17) (a) Schnermann, M. J.; Overman, L. E. Angew. Chem., Int. Ed.
2012, 51, 9576. (b) Cheng, W.-M.; Shang, R.; Fu, Y. ACS Catal. 2017, 7,
907. (c) Cheng, W.-M.; Shang, R.; Fu, M.-C.; Fu, Y. Chem. - Eur. J. 2017,
23, 2537.
ORCID
(18) For irradiation-induced copper-catalyzed C−N bond and C−S
bond formation, see: (a) Creutz, S. E.; Lotito, K. J.; Fu, G. C.; Peters, J.
C. Science 2012, 338, 647. (b) Bissember, A. C.; Lundgren, R. J.; Creutz,
S. E.; Peters, J. C.; Fu, G. C. Angew. Chem., Int. Ed. 2013, 52, 5129.
(c) Ziegler, D. T.; Choi, J.; Munoz-Molina, J. M.; Bissember, A. C.;
Peters, J. C.; Fu, G. C. J. Am. Chem. Soc. 2013, 135, 13107. (d) Uyeda, C.;
Tan, Y.; Fu, G. C.; Peters, J. C. J. Am. Chem. Soc. 2013, 135, 9548.
(19) (a) Zou, Y.; Zhou, J. S. Chem. Commun. 2014, 50, 3725.
(b) McMahon, C. M.; Alexanian, E. J. Angew. Chem., Int. Ed. 2014, 53,
5974. For examples of a cobalt-catalyzed alkyl Heck reaction, see:
(c) Ikeda, Y.; Nakamura, T.; Yorimitsu, H.; Oshima, K. J. Am. Chem. Soc.
2002, 124, 6514.
(20) (a) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev.
2013, 113, 5322. (b) Skubi, K. L.; Blum, T. R.; Yoon, T. P. Chem. Rev.
2016, 116, 10035. (c) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016,
116, 10075.
(21) Nakamura, M.; Matsuo, K.; Ito, S.; Nakamura, E. J. Am. Chem. Soc.
2004, 126, 3686.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
This work was supported by the NSFC (21325208, 21572212),
MOST (2017YFA0303500), FRFCU, and PCSIRT.
■
REFERENCES
■
(1) (a) Baudoin, O. Angew. Chem., Int. Ed. 2007, 46, 1373.
(b) Rodríguez, N.; Goossen, L. J. Chem. Soc. Rev. 2011, 40, 5030.
(c) Shang, R.; Liu, L. Sci. China: Chem. 2011, 54, 1670. (d) Xuan, J.;
Zhang, Z. G.; Xiao, W. J. Angew. Chem., Int. Ed. 2015, 54, 15632.
(e) Johnston, C. P.; Smith, R. T.; Allmendinger, S.; MacMillan, D. W. C.
Nature 2016, 536, 322. (f) Wei, Y.; Hu, P.; Zhang, M.; Su, W. Chem. Rev.
2017, 117, 8864.
(2) (a) Myers, A. G.; Tanaka, D.; Mannion, M. R. J. Am. Chem. Soc.
2002, 124, 11250. (b) Tanaka, D.; Romeril, S. P.; Myers, A. G. J. Am.
Chem. Soc. 2005, 127, 10323.
(3) (a) Shang, R.; Yang, Z.-W.; Wang, Y.; Zhang, S.-L.; Liu, L. J. Am.
Chem. Soc. 2010, 132, 14391. (b) Zhang, S.-L.; Fu, Y.; Shang, R.; Guo,
Q.-X.; Liu, L. J. Am. Chem. Soc. 2010, 132, 638. (c) Shang, R.; Ji, D.-S.;
Chu, L.; Fu, Y.; Liu, L. Angew. Chem., Int. Ed. 2011, 50, 4470.
(4) (a) Frisch, A. C.; Beller, M. Angew. Chem., Int. Ed. 2005, 44, 674.
(b) Kaga, A.; Chiba, S. ACS Catal. 2017, 7, 4697.
(22) Noda, D.; Sunada, Y.; Hatakeyama, T.; Nakamura, M.;
Nagashima, H. J. Am. Chem. Soc. 2009, 131, 6078.
(23) For references on irradiation-induced transition-metal catalysis,
see: (a) Weiss, M. E.; Kreis, L. M.; Lauber, A.; Carreira, E. M. Angew.
Chem., Int. Ed. 2011, 50, 11125. (b) Weiss, M. E.; Carreira, E. M. Angew.
Chem., Int. Ed. 2011, 50, 11501. (c) Kreis, L. M.; Krautwald, S.; Pfeiffer,
N.; Martin, R. E.; Carreira, E. M. Org. Lett. 2013, 15, 1634. (d) Parasram,
M.; Gevorgyan, V. Chem. Soc. Rev. 2017, 46, 6227. (e) Kurandina, D.;
Rivas, M.; Radzhabov, M.; Gevorgyan, V. Org. Lett. 2018, DOI:
(5) (a) Goossen, L. J.; Deng, G.; Levy, L. M. Science 2006, 313, 662.
(b) Goossen, L. J.; Rodriguez, N.; Melzer, B.; Linder, C.; Deng, G.; Levy,
L. M. J. Am. Chem. Soc. 2007, 129, 4824.
(6) (a) Konev, M. O.; Jarvo, E. R. Angew. Chem., Int. Ed. 2016, 55,
11340. (b) Huihui, K. M. M.; Caputo, J. A.; Melchor, Z.; Olivares, A. M.;
D
Org. Lett. XXXX, XXX, XXX−XXX