A R T I C L E S
Scheme 1
Iwasaki et al.
Scheme 2
enylphosphine led to γ-selectivity,4a and bidentate 1,3-bis-
(diphenylphosphino)propane, to R.4c However, the excellent
example highlights the difficulty in achieving the cross-coupling
allylation from the viewpoint of modern organic synthesis.
Specifically, the reactions required heating in sealed tubes and
the use of relatively labile allylfluorosilanes and lacked universal
stereochemical control of the (E)- and (Z)-R-products. A
regiocontrolled coupling reaction of tributylcrotylstannane with
1-iodonaphthalene was reported.3e Use of triphenylarsine as a
ligand provided the corresponding (E)-R-product, whereas
triphenylphosphine yielded the γ-product.8 Unfortunately, the
generality and the efficiency of the reaction are unsatisfactory,
and no procedure to obtain (Z)-R-product was disclosed. Very
recently, a γ-selective cross-coupling reaction with potassium
(E)-crotyltrifluoroborate was reported, wherein no R-selectivity
was attained.5e,f,9
The γ-selectivity observed in the reactions of crotylfluorosi-
lanes and of crotyltrifluoroborate was explained by the following
hypotheses (Scheme 1):4a,5e (1) the transmetalations between
the crotylmetals and arylpalladium halides proceed in an SE2′
process,10 and (2) aryl(1-methyl-2-propenyl)palladiums, a σ-al-
lylpalladium11 formed by the transmetalations, predominantly
undergo rapid reductive elimination of 1-methyl-2-propenylare-
nes without suffering from conceivable σ-π interconversion
that can lead to the R-product. The hypotheses clearly suggest
that one should simply prepare and use the corresponding well-
defined allyl metals to obtain the desired products selectively.
In spite of the intelligible idea, preparation of allyl metals having
an arbitrary substitution pattern is generally difficult. Moreover,
there remains a possibility that the transmetalation would pro-
ceed unexpectedly in an SE2 fashion, which can heavily depend
on the structure and electronic factors of allyl metals used.10
We have recently communicated the use of homoallyl
alcohols as the allyl sources in the palladium-catalyzed allyla-
tions of organic halides instead of allyl metal reagents.12 Scheme
2 illustrates our proposed mechanism. After oxidative addition
yielding A (step 1), ligand exchange with homoallyl alcohol 1
would take place to afford alkoxy(aryl)palladium B (step 2).
Retro-allylation reaction of B,13-15 the key step of our strategy,
occurred, providing σ-allyl(aryl)palladium C (step 3). Since the
retro-allylation proceeds in a concerted fashion via a confor-
mationally regulated six-membered cyclic transition state and
the reductive elimination from C (step 4) is faster than the
isomerization of C to π-allyl(aryl)palladium (see Scheme 1),
the stereo- and regiochemical information of homoallyl alcohol
1 is transferred to C and then to the allylated product 3. In
contrast to allyl metals, homoallyl alcohols are not sensitive to
(12) Hayashi, S.; Hirano, K.; Yorimitsu, H.; Oshima, K. J. Am. Chem. Soc.
2006, 128, 2210-2211.
(5) Palladium-catalyzed reactions with allylboron reagents: (a) Kalinin, V. N.;
Denisov, F. S.; Bubnov, Y. N. MendeleeV Commun. 1996, 6, 206-207.
(b) Fu¨rstner, A.; Siedel, G. Synlett 1998, 161-162. (c) Occhiato, E. G.;
Trabocchi, A.; Guarna, A. J. Org. Chem. 2001, 66, 2459-2465. (d) Kotha,
S.; Behera, M.; Shah, V. R. Synlett 2005, 1877-1880. (e) Yamamoto, Y.;
Takada, S.; Miyaura, N. Chem. Lett. 2006, 35, 704-705. (f) Yamamoto,
Y.; Takada, S.; Miyaura, N. Chem. Lett. 2006, 35, 1368-1369.
(6) Palladium-catalyzed reactions with allylindiums: (a) Lee, P. H.; Sung, S.-
Y.; Lee, K. Org. Lett. 2001, 3, 3201-3204. (b) Lee, K.; Lee, J.; Lee, P. H.
J. Org. Chem. 2002, 67, 8265-8268.
(13) Zirconium-mediated reactions: (a) Fujita, K.; Yorimitsu, H.; Oshima, K.
Chem. Rec. 2004, 4, 110-119. (b) Fujita, K.; Yorimitsu, H.; Shinokubo,
H.; Oshima, K. J. Org. Chem. 2004, 69, 3302-3307. Gallium-mediated
reactions: (c) Hayashi, S.; Hirano, K.; Yorimitsu, H.; Oshima, K. Org.
Lett. 2005, 7, 3577-3579. (d) Hayashi, S.; Hirano, K.; Yorimitsu, H.;
Oshima, K. J. Organomet. Chem. 2007, 692, 505-513. Rhodium-catalyzed
reactions: (e) Takada, Y.; Hayashi, S.; Hirano, K.; Yorimitsu, H.; Oshima,
K. Org. Lett. 2006, 8, 2515-2517.
(14) Retro-allylations from lithium, magnesium, tin, and zinc alkoxides were
observed: (a) Benkeser, R. A.; Siklosi, M. P.; Mozdzen, E. C. J. Am. Chem.
Soc. 1978, 100, 2134-2139. (b) Gerard, F.; Miginiac, P. Bull. Chim. Soc.
Fr. 1974, 2527-2533. (c) Jones, P.; Knochel, P. J. Org. Chem. 1999, 64,
186-195. (d) Peruzzo, V.; Tagliavini, G. J. Organomet. Chem. 1978, 162,
37-44. (e) Yanagisawa, A.; Aoki, T.; Arai, T. Synlett 2006, 2071-2074.
Ruthenium-catalyzed deallylation was reported: (e) Kondo, T.; Kodoi, K.;
Nishinaga, E.; Okada, T.; Morisaki, Y.; Watanabe, Y.; Mitsudo, T. J. Am.
Chem. Soc. 1998, 120, 5587-5588. Rhodium-catalyzed deallylation was
reported: (f) Zhao, P.; Incarvito, C. D.; Hartwig, J. F. J. Am. Chem. Soc.
2006, 128, 9642-9643.
(15) Palladium-catalyzed reactions of organic halides with tertiary alcohols via
â-carbon elimination were reported. Arylation with arylmethanols: (a)
Terao, Y.; Wakui, H.; Satoh, T.; Miura, M.; Nomura, M. J. Am. Chem.
Soc. 2001, 123, 10407-10408. Via ring opening of cyclobutanols: (b)
Nishimura, T.; Uemura, S. J. Am. Chem. Soc. 1999, 121, 11010-11011.
(c) Larock, R. C.; Reddy, C. K. Org. Lett. 2000, 2, 3325-3327.
Alkynylation with propargylic alcohols: (d) Chow, H.-F.; Wan, C.-W.;
Low, K.-H.; Yeung, Y.-Y. J. Org. Chem. 2001, 66, 1910-1913.
(7) (a) Yamamoto, Y.; Asao, N. Chem. ReV. 1993, 93, 2207-2293. (b)
Denmark, S. E.; Fu, J. Chem. ReV. 2003, 103, 2763-2793.
(8) Ligand effect on the regiochemistry of such couplings is discussed in
detail: (a) Kurosawa, H.; Shiba, K.; Hirako, K.; Kakiuchi, K.; Ikeda, I. J.
Chem. Soc., Chem. Commun. 1994, 1099-1100. (b) Kurosawa, H.; Shiba,
K.; Hirako, K.; Ikeda, I. Inorg. Chim. Acta 1996, 250, 149-154. (c)
Kurosawa, H.; Ogoshi, S. Bull. Chem. Soc. Jpn. 1998, 71, 973-984.
(9) γ-Selective Pd-catalyzed reactions of allylboronic acids with iodoarenes
have been reported very recently. However, a different mechanism which
includes a carbopalladation process is believed to operate in the reactions.
Sebelius, S.; Olsson, V. J.; Wallner, O. A.; Szabo´, K. J. J. Am. Chem. Soc.
2006, 128, 8150-8151.
(10) (a) Naruta, Y.; Nishigaichi, Y.; Maruyama, K. Tetrahedron 1989, 45, 1067-
1078. (b) Roberts, R. M. G. J. Organomet. Chem. 1969, 18, 307-319.
(11) Chemistry of σ-allylpalladiums: (a) Numata, S.; Okawara, R.; Kurosawa,
H. Inorg. Chem. 1977, 16, 1737-1741. (b) Solin, N.; Kjellgren, J.; Szabo´,
K. J. J. Am. Chem. Soc. 2004, 126, 7026-7033. (c) Garc´ıa-Iglesias, M.;
Bun˜uel, E.; Ca´rdenas, D. J. Organometallics 2006, 25, 3611-3618.
9
4464 J. AM. CHEM. SOC. VOL. 129, NO. 14, 2007