Communications
Conformationally Restricted Peptides
Experimental Section
The antimony thin films were synthesized in ultra-high vacuum (base
pressure: 4 î 10ꢀ11 mbar) by evaporation of Sb4 molecules from a
resistance-heated effusive oven (temperature: 3308C; deposition
rate: 0.1 nmsꢀ1; Sb: 99.9999%, Johnson-Matthey). The layer thick-
ness is given in monolayers of Sb atoms. The MoS2 substrates were
prepared by cleavage according to the procedure given in reference
[13]. The AuSb2 surface alloy was prepared starting from Au(111).[14]
On this substrate the surface alloy AuSb2 with the (100) orientation
forms spontaneously, if less than one monolayer of antimony is
deposited at room temperature.[15] The beetle-type STM[16] is located
in an analysis chamber directly attached to the preparation cham-
ber.[17] To increase image contrast, the STM data were electronically
differentiated directly during acquisition. Therefore the STM images
appear as if they are illuminated from the side.
Analogues of Neuropeptide Y Containing
b-Aminocyclopropane Carboxylic Acids are the
Shortest Linear Peptides That Are Selective for
the Y1 Receptor**
Norman Koglin, Chiara Zorn, Raphael Beumer,
Chiara Cabrele, Christian Bubert, Norbert Sewald,
Oliver Reiser,* and Annette G. Beck-Sickinger*
Dedicated to Professor Peter Welzel
on the occasion of his 65th birthday.
Received: April 8, 2002
Revised: October 11, 2002 [Z19057]
Neuropeptide Y (NPY) is one of the most abundant neuro-
peptides in the mammalian central nervous system. It consists
of 36 amino acids and has an amide group at the C terminus.
To date NPY is the strongest known stimulator of food intake
in rat and mice models. Other important biological functions
are vasoconstriction in the periphery, regulation of behavior
and modulation of pain and epileptic seizures.[1]
In mammals, the activities of NPYare mediated by at least
three different G-protein-coupled receptors (Y1, Y2, and Y5).
Because NPY shows sub-nanomolar affinity towards all of
them, it is still difficult to distinguish the physiological roles of
each receptor in vivo. To address this problem, the knowledge
of the particular bioactive conformation at each receptor is
indispensable for the further development of subtype-selec-
tive ligands. Substitutions of single amino acids have revealed
that especially the highly conserved C-terminal part of NPY,
with its two positively charged arginine side chains in
positions 33 and 35 and the tyrosine amide in position 36,
plays a crucial role during the recognition process by the
respective receptor. Because of its flexibility, no defined
structure could be assigned to this important part of the
molecule to date. It is assumed that different secondary
structure motifs of the C terminus are responsible for
receptor subtype selectivity.
[1] J. Donohue, The structures of the elements, Wiley-Interscience,
New York, 1974.
[2] J. M¸hlbach, P. Pfau, E. Recknagel, K. Sattler, Surf. Sci. 1981,
106, 18.
[3] A. F. Hollemann, N. Wiberg, Lehrbuch der Anorganischen
Chemie, 101. ed., Walter de Gruyter, Berlin, 1995.
[4] H. Sontag, R. Weber, Chem. Phys. 1982, 70, 23.
[5] V. Kumar, Phys. Rev. B 1993, 48, 8470.
[6] Y. W. Mo, Phys. Rev. Lett. 1992, 69, 3643.
[7] J. Cohen, J. Appl. Phys. 1954, 25, 798; M. Hashimoto, K.
Umezawa, R. Murayama, Thin Solid Films 1990, 188, 95; A.
Hoareau, J. X. Hu, P. Jensen, P. Melinon, M. Treilleux, B.
Cabaud, Thin Solid Films 1992, 209, 161; H. Murmann, Z. Phys.
1929, 54, 741; J. A. Prins, Nature 1933, 131, 760; H. Levinstein, J.
Appl. Phys. 1949, 20, 306.
[8] H. Richter, H. Berckhemer, G. Breitling, Z. Naturforsch. A 1952,
9, 236.
[9] B. Kaiser, T. M. Bernhardt, B. Stegemann, J. Opitz, K. Rade-
mann, Nucl. Instrum. Methods Phys. Res. Sect. B 1999, 157, 155;
T. M. Bernhardt, B. Kaiser, K. Rademann, Phys. Chem. Chem.
Phys. 2002, 4, 1192.
[10] P. Lamparter, S. Steeb, W. Knoll, Z. Naturforsch. A 1976, 31, 90.
[11] J. Eiduss, R. Kalendarev, A. Rodionov, A. Sazonov, G. Chik-
vaidze, Phys. Status Solidi B 1996, 193, 3.
[12] G. Fuchs, P. Melinon, F. Santos Aires, M. Treilleux, B. Cabaud,
A. Hoareau, Phys. Rev. B 1991, 44, 3926.
[13] J. G. Kushmerick, S. A. Kandel, P. Han, J. A. Johnson, P. S. Weiss,
J. Phys. Chem. B 2000, 104, 2980.
[14] J. A. DeRose, T. Thundat, L. A. Nagahara, S. M. Lindsay, Surf.
Sci. 1991, 256, 102.
[*] Prof. Dr. O. Reiser, Dr. C. Zorn, Dr. R. Beumer, Dr. C. Bubert
Institut f¸r Organische Chemie
Universit‰t Regensburg
Universit‰tsstrasse 31, 93040 Regensburg (Germany)
Fax: (þ49)941-9434-121
[15] B. Stegemann, T. M. Bernhardt, B. Kaiser, K. Rademann, Surf.
Sci. 2002, 511, 153.
[16] K. Besocke, Surf. Sci. 1987, 181, 145.
[17] B. Kaiser, T. M. Bernhardt, K. Rademann, Nucl. Instrum.
Methods Phys. Res. Sect. B 1997, 125, 223; T. M. Bernhardt,
Dissertation thesis, Humboldt-University, Berlin, 1997.
E-mail: oliver.reiser@chemie.uni-regensburg.de
Prof. Dr. A. G. Beck-Sickinger, Dipl.-Biochem. N. Koglin,
Dr. C. Cabrele
Institut f¸r Biochemie
Universit‰t Leipzig
Talstrasse 33, 04103 Leipzig (Germany)
Fax: (þ49)341-9736-998
E-mail: beck-sickinger@uni-leipzig.de
Prof. Dr. N. Sewald
Institut f¸r Organische und Bioorganische Chemie
Universit‰t Bielefeld
Postfach 100131, 33501 Bielefeld (Germany)
[**] This work was supported by the Deutsche Forschungsgemeinschaft
(BE1264/3-1 and RE948-4/1) and the Fonds der Chemischen
Industrie and through generous chemical gifts from BASF AG, Bayer
AG, and Degussa AG.
202
¹ 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
1433-7851/03/4202-0202 $ 20.00+.50/0
Angew. Chem. Int. Ed. 2003, 42, No. 2