complex 8 (25%) with concomitant formation of g-thiobutyr-
olactone in 91% yield in 2 days.
materials” in Tokyo University of Agriculture and Technol-
ogy.
A plausible mechanism of this catalytic reaction is proposed
as shown in Scheme 1.
Notes and references
† Heterodinuclear Pt–Co complexes, (dppe)RPt–Co(CO)4 [R = CH2CMe3
(6); Ph (7)] were prepared in good yields by simple metathesis reactions of
PtR(NO3)(dppe) [R = CH2C(Me)3, Ph] with sodium tetracarbonylcobaltate
Na[Co(CO)4].2c 6: Yield 87%, mp 155–157 °C (dec.). Anal. Calcd. for
C35H35CoO4P2Pt: C, 50.31; H, 4.22. Found: C, 49.98; H, 4.28%. IR (KBr,
cm21): 2020, 1934, 1900, 1847 (nCO). 1H NMR (acetone-d6, rt, 300.4
MHz): d 0.65 (s, CH2CMe3), 2.10 (br, 2JPtH = 64 Hz, CH2Me3), 2.3–2.7 (m,
dppe CH2), 7.5–7.9 (m, dppe Ph). 31P{1H} NMR (acetone-d6, rt, 121.6
MHz): d 42.0 (s, 1JPtP = 3999 Hz, P trans to Co), 47.8 (s, 1JPtP = 1521 Hz,
P trans to CH2CMe3). 7: Yield 85%, mp 193–198 °C (dec.). Anal. Calcd. for
C36H29CoO4P2Pt: C, 51.38; H, 3.47. Found: C, 51.74; H, 3.67%. IR (KBr,
cm21): 2027, 1954, 1927, 1886 (nCO). 1H NMR (acetone-d6, rt, 300.4
MHz): d 2.3–2.7 (m, dppe CH2), 6.53 (t, 3JHH = 7.2 Hz, p-H of Ph), 6.66
(dt, 5JPH = 1.6 Hz, 3JHH = 7.2 Hz, m-H of Ph), 7.02 (t, 4JPH
=
3JHH = 7.2
3
Hz, JPtH = 37 Hz, o-H of Ph), 7.4–7.9 (m, dppe Ph). 31P{1H} NMR
2
1
(acetone-d6, rt, 121.6 MHz): d 42.0 (d, JPP = 2 Hz, JPtP = 3809 Hz, P
2
1
trans to Co), 47.8 (d, JPP = 2 Hz, JPtP = 1661 Hz, P trans to Ph).
(dppe)(MeCO)Pt–Co(CO)4 (8)2f,j was synthesized by the oxidative addition
of Co(COMe)(CO)4 to Pt(styrene)(dppe).
‡ Spectroscopic data for 9: 1H NMR (acetone-d6, rt, 300.4 MHz): d 0.46
(dd, 3JPH = 3.9, 6.0 Hz, 2JPtH = 56.8 Hz, Pt–Me), 2.4–2.7 (m, dppe CH2),
3.0–3.4 (br, SCH2CH2), 3.5–3.8 (br, SCH2), 7.4–7.9 (m, dppe Ph). 31P{1H}
NMR (acetone-d6, rt, 121.6 MHz): d 42.9 (d, 2JPP = 2 Hz, 1JPtP = 3510 Hz,
P trans to S), 47.8 (d, 2JPP = 2 Hz, 1JPtP = 1820 Hz, P trans to Ph).
Scheme 1
1 (a) M. J. Chetcuti, Comprehensive Organometallic Chemistry II, eds. E.
W. Abel, F. G. A. Stone and G. Wilkinson, Pergamon, Oxford, 1995, vol.
10, p. 351; (b) P. Braunstein and J. Rose, Comprehensive Organometallic
Chemistry II, eds. E. W. Abel, F. G. A. Stone and G. Wilkinson,
Pergamon, Oxford, 1995, vol. 10, p. 23; (c) T. Beringhelli, A. Ceriotti, G.
D’Alfonso, P. R. Della, G. Ciani, M. Moret and A. Sironi, Orgnaome-
tallics, 1990, 9, 1053; (d) M. Knorr and C. Strohmann, Organometallics,
1999, 18, 248.
2 (a) S. Komiya and I. Endo, Chem. Lett., 1988, 1709; (b) K. Miki, N.
Kasai, I. Endo and S. Komiya, Bull. Chem. Soc. Jpn., 1989, 62, 4033; (c)
A. Fukuoka, T. Sadashima, T. Sugiura, X. Wu, Y. Mizuho and S.
Komiya, J. Organomet. Chem., 1994, 473, 139; (d) A. Fukuoka, T.
Sadashima, I. Endo, N. Ohashi, Y. Kambara, T. Sugiura, K. Miki, N.
Kasai and S. Komiya, Organometallics, 1994, 13, 4033; (e) A. Fukuoka,
T. Sugiura, T. Yasuda, T. Taguchi, M. Hirano and S. Komiya, Chem.
Lett., 1997, 329; (f) A. Fukuoka, S. Fukagawa, M. Hirano and S. Komiya,
Chem. Lett., 1997, 377; (g) T. Yasuda, A. Fukuoka, M. Hirano and S.
Komiya, Chem. Lett., 1998, 29; (h) S. Komiya, S. Muroi, M. Furuya and
M. Hirano, J. Am. Chem. Soc., 2000, 122, 170; (i) N. Komine, H. Hoh, M.
Hirano and S. Komiya, Organometallics, 2000, 19, 5251; (j) A. Fukuoka,
S. Fukagawa, M. Hirano, N. Koga and S. Komiya, Organometallics,
2001, 20, 2065.
The first step of the catalytic cycle is coordination of thietane
to Pt to induce heterolytic cleavage of the Pt–Co bond, giving
[PtMe(thietane-kS)(dppe)]+[Co(CO)4]2. Then the [Co(CO)4]2
anion attacks the less-substituted a-S carbon of the coordinated
thietane to cause C–S bond cleavage giving the dinuclear
complex (dppe)MePt–SCHR(CH2)2–Co(CO)4. The formation
of such ring-opened products has been shown for the analogous
reactions of heterodinuclear complexes (dppe)RPt–M(CO)5 (M
= Mn, Re) with three-membered heterocycles such as thiir-
anes.2h A facile insertion of CO into the cobalt–carbon bond
followed by C–S bond formation results in the formation of g-
thiobutyrolactone and regeneration of the starting Pt–Co
heterodinuclear complex to close the catalytic cycle.
In conclusion, organoplatinum–cobalt heterodinuclear com-
plexes are shown to catalyze the efficient carbonylation of
thietanes under mild conditions. This high catalytic activity is
considered to be caused by the presence of a platinum–cobalt
bond. Elucidation of the origin of this cooperative effect is
under investigation.
The work was financially supported by Grant-in-Aid for
Scientific Research from the Ministry of Education, Science,
Culture, Sports and Technology, Japan and the 21st Century
COE (Center of Excellence) program of “Future Nano-
3 M.-D. Wang, S. Calet and H. Alper, J. Org. Chem, 1989, 54, 21.
4 K. Nagasawa and A. Yoneta, Chem. Pharm. Bull., 1985, 33, 5048.
5 Y. T. Chu, C. Y. Mok, H. H. Huang, I. Novak and S. C. Ng, J. Chem. Soc.,
Perkin Trans. 2, 1996, 577.
CHEM. COMMUN., 2003, 2046–2047
2047