10.1002/adsc.201801430
Advanced Synthesis & Catalysis
and CuBr, give the corresponding intermediate 3.
Finally, the desired product was produced with the
concomitant formation of copper catalyst.
5646. h) L.-Y. Xie, J. Qu, S. Peng, K.-J. Liu, Z. Wang,
M.-H. Ding, Y. Wang, Z. Cao, W.-M. He, Green Chem.
2018, 20, 760-764. i) L.-Y. Xie, S. Peng, F. Liu, G.-R.
Chen, W. Xia, X. Yu, W.-F. Li, Z. Cao, W.-M. He, Org.
Chem. Front. 2018, 5, 2604-2609. j) L.-Y. Xie, S. Peng,
L.-L. Jiang, X. Peng, W. Xia, X. Yu, X.-X. Wang, Z.
Cao, W.-M. He, Org. Chem. Front. 2018, DOI:
10.1039/C8QO01128A. k) F. Xu, Y. Li, X. Huang, X.
Fang, Z. Li, H. Jiang, J. Qiao, W. Chu, Z. Sun, Adv.
Synth. Catal. 2018, DOI: 10.1002/adsc.201801185. l) C.
Sen, S. C. Ghosh, Adv. Synth. Catal. 2018, 360, 905-
910. m) X. Chen, F. Yang, X. Cui, Y. Wu, Adv. Synth.
Catal. 2017, 359, 3922-3926. n) L. Sumunnee, C.
Buathongjan, C. Pimpasri, S. Yotphan, Eur. J. Org.
Chem. 2017, 1025–1032.
In summary, a facile and highly efficient method has
been successfully developed for the synthesis of
carbamoylated quinoline N-oxides. A series of
structurally diverse products could be effectively
obtained using TBHP as oxidant in the presence of
CuBr. Further studies on the scope, mechanism, and
synthetic application of this reaction are under
investigation
Experimental Section
[5] a) Y.-L. Wang, L.-M. Zhang, Synthesis. 2015, 47, 289-
305; b) G.-B. Yan, A. J. Borah, M.-H. Yang, Adv.
Synth. Catal. 2014, 356, 2375-2394.
A sealable reaction tube equipped with a magnetic stirrer
bar was charged with quinoline N-oxide (0.2 mmol), N-
phenylhydrazinecarboxamide (2.0 equiv.), CuBr (5mol%),
TBHP(5.0-6.0 mol/L in decane, 3.0 equiv.), DMSO (2.0
ml). The reaction vessel was carried out 100 ℃. After
completion, it was diluted with ethyl acetate. After the
solvent was removed under reduced pressure, the residue
was purified by column chromatography on silica gel to
afford the corresponding product.
[6] L.-Y. Xie, Y. Duan, L.-H. Lu, Y.-J. Li, S. Peng, C. Wu,
K.-J. Liu, Z. Wang, W.-M. He, ACS Sustainable Chem.
Eng. 2017, 5, 10407-10412.
[7] a) L.-Y. Xie, S. Peng, F. Liu, J.-Y. Yia, M.Wang, Z.-L.
Tang, X.-H. X, W.-M. He, Adv. Synth. Catal. 2018, 360,
4259-4264. b) L.-Y. Xie, S. Peng, L.-H. Lu, J. Hu, W.-
H. Bao, F. Zeng, Z. Tang, X. Xu, W.-M. He, ACS
Sustainable Chem. Eng. 2018, 6, 7989-7994.
Acknowledgements
[8] W.-Z. Bi, K. Sun, C. Qu, X.-L. Chen, L.-B. Qu, S.-H.
Zhu, X. Li, H.-T. Wu, L.-K. Duan, Y.-F. Zhao, Org.
Chem. Front. 2017, 4, 1595-1600.
We gratefully acknowledge the financial support from National
Natural Science Foundation of China (21402103, 21772107), the
China Postdoctoral Science Foundation (150030), and the
Research Fund of Qingdao Agricultural University’s Highlevel
Person (631303).
[9] X. Chen, C.-W. Zhu, X.-L. Cui, Y.-J. Wu, Chem.
Commun. 2013, 49, 6900-6902.
[10] Z.-Y. Wu, C. Pi, X.-L. Cui, J. Bai, Y.-J. Wu, Adv.
Synth. Catal. 2013, 355, 1971-1976.
References
[11] X. Gong, G.-Y. Song, H. Zhang, X.-W. Li, Org. Lett.
2011, 13, 1766–1769.
[1] a) P. Y. Chung, Z. X. Bian, H. Y. Pun, D. Chan, A. S.
C. Chan, C. H. Chui, J. C. O. Tang, K. H. Lam, Future
Med. Chem. 2015, 7, 947-967; b) J. P. Michael, Nat.
Prod. Rep. 2008, 25, 166-187.
[12] Z.-Y. Wu, H.-Y. Song, X.-L. Cui, C. Pi, W.-W. Du,
Y.-J. Wu, Org. Lett. 2013, 15, 1270-1273.
[2] a) Y. L. Chen, K. C. Fang, J. Y. Sheu, S. L. Hsu, C. C.
Tzeng, J. Med. Chem. 2001, 44, 2374-2377; b) A.
Salahuddin, A. Inam, R. L. V. Zyl, D. C. Heslop, C.-T.
Chen, F. Avecilla, S. M. Agarwal, A. Azam, Bioorg.
Med. Chem. 2013, 21, 3080-3089.
[13] G. Li, C.-Q. Jia, K. Sun, Org. Lett. 2013, 15, 5198-
5201.
[14] a) S.-H. Hao, L.-X Li, D.-Q. Dong, Z.-L. Wang, Chin.
J. Catal. 2017, 38, 1664-1667; b) D.-Q. Dong, S.-H.
Hao, D.-S. Yang, L.-X. Li, Z.-L. Wang, Eur. J. Org.
Chem. 2017, 45, 6576-6592; c) D.-Q Dong, H. Zhang,
Z.-L Wang, RSC Adv. 2017, 7, 3780-3782; d) H. Zhang,
D.-Q. Dong, S.-H. Hao. Z.-L. Wang, RSC Adv. 2016, 6,
8465-8468; e) L.-X. Li, S.-H. Hao, D.-Q. Dong, Z.-L.
Wang, Tetrahedron Lett. 2018, 59, 1517-1520; f) S.-H.
Hao, L.-X. Li, D.-Q. Dong, Z.-L. Wang, X.-Y. Yu,
Tetrahedron Lett. 2018, 59, 4073-4075. g) L.-H. Lu, S.-
J. Zhou, M. Sun, J.-L. Chen, W. Xia, X. Yu, X. Xu,
W.-M. He, ACS Sustainable Chem. Eng. 2018, DOI:
10.1021/acssuschemeng.8b05344. h) L.-Y. Xie, S.
Peng, J.-X. Tan, R.-X. Sun, X. Yu, N.-N. Dai, Z.-L.
Tang, X. Xu, W.-M. He, ACS Sustainable Chem. Eng.
2018, 6, 16976-16981.
[3] K. Y. Lu, H. H. Chou, C. H. Hsieh, Y. H. O. Yang, H.
R. Tsai, H. Y. Tsai, L. C. Hsu, C. Y. Chen, I. C. Chen,
C. H. Cheng, Adv. Mater. 2011, 23, 4933-4937.
[4] For selected literatures, see: a) J. B. Bharate, R. A.
Vishwakarma, S. B. Bharate, RSC Adv. 2015, 5, 42020-
42053; b) S. M. Prajapati, K. D. Patel, R. H. Vekariya,
S. N. Panchal, H. D. Patel, RSC Adv. 2014, 4, 24463-
24476; c) K. Wu, Z.-L. Huang, C. Liu, H. Zhang, A.
Lei, Chem. Commun. 2015, 51, 2286-2289; d) Q.-H.
Gao, S. Liu, X. Wu, A.-X. Wu, Org. Lett. 2014, 16,
4582-4585; e) Y. Wang, C. Chen, J. Peng, M. Li,
Angew. Chem. Int. Ed. 2013, 52, 5323-5327. f) W. Luo,
X. Shi, W. Zhou, L Yang, Org. Lett., 2016, 18, 2036-
2309. g) L.-Y. Xie, Y.-J. Li, J. Qu, Y. Duan, J. Hu, K.-J. [15] CCDC-1851712 contains the supplementary
Liu, Z. Cao, W.-M. He, Green Chem. 2017, 19, 5642-
crystallographic data for this paper (P1). These data can
4
This article is protected by copyright. All rights reserved.