ACS Catalysis
Page 8 of 10
acknowledged for the help provided during the revision of
Kelley, S. P.; Rogers, R. D.; Shaughnessy, K. H. Eur. J.
1
2
3
4
5
6
this manuscript. We thank ERC (FUNCAT to SPN) for fund-
ing. We thank the EPSRC NMSSC in Swansea for mass spec-
trometric analyses. The EPSRC is gratefully acknowledged
for financial support (Ph.D. studentships to AB, GB, MC and
RMN Through the doctoral training centre CRITICAT
EP/L016419/1).
Org. Chem. 2014, 2014, 7395–7404; j) DeAngelis, A. J.;
Gildner, P. G.; Chow, R.; Colacot, T. J. J. Org. Chem.
2015, 80, 6794–6813.
(11) Potukuchi, H. K.; Spork, A. P.; Donohoe, T. J. Org.
Biomol. Chem. 2015, 13, 4367–4373.
7
8
9
(12) a) Rutherford, J. L.; Rainka, M. P.; Buchwald, S. L.
J. Am. Chem. Soc. 2002, 124, 15168–15169; b) Bar-
luenga, J.; Jiménez-Aquino, A.; Valdés, C.; Aznar, F.
Angew. Chem. Int. Ed. 2007, 46, 1529–1532; c) Bar-
luenga, J.; Jiménez-Aquino, A.; Aznar, F.; Valdés, C. J.
Am. Chem. Soc. 2009, 131, 4031–4041; d) Hellal, M.;
Singh, S.; Cuny, G. D. J. Org. Chem. 2012, 77, 4123–
4130.; e) Knapp, J. M.; Zhu, J. S.; Tantillo, D. J.; Kurth,
M. J. Angew. Chem. Int. Ed. 2012, 51, 10588–10591; f)
Rotta-Loria, N. L.; Borzenko, A.; Alsabeh, P. G.;
Lavery, C. B.; Stradiotto, M. Adv. Synth. Catal. 2015,
357, 100–106; g) Pham, N. N.; Dang, T. T.; Ngo, N. T.;
Villinger, A.; Ehlers, P.; Langer, P. Org. Biomol. Chem.
2015, 13, 6047–6058.
ABBREVIATIONS
AAC, alpha arylation of carbonyls; NHC, N-heterocyclic car-
bene; TEA, tryethylamine.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
REFERENCES
(1) a) Horton, D. A.; Bourne, G. T.; Smythe, M. L.
Chem. Rev. 2003, 103, 893–930; b) Galliford, C. V;
Scheidt, K. A. Angew. Chem. Int. Ed. 2007, 46, 8748–
8758; c) O’Hagan, D. Nat. Prod. Rep. 2000, 17, 435–
446; d) Michael, J. P. Nat. Prod. Rep. 2005, 22, 627–
646.
(2) Hughes, G.; Bryce, M. R. J. Mater. Chem. 2005, 15,
94–107.
(3) a) Knorr, L. Chem. Ber. 1884, 17, 1635–1642; b)
Fischer, E.; Hutz, H. Chem Ber. 1895, 28, 585-587.
(13) a) Eidamshaus, C.; Burch, J. D. Org. Lett. 2008,
10, 4211–4214. b) Lee, J. H.; Kim, M.; Kim, I. J. Org.
Chem. 2014, 79, 6153–6163.
(4) Hegedus, L. S.; Mulhern, T. A.; Mori, A. J. Org.
Chem. 1985, 50, 4282–4288.
(14) a) Donohoe, T. J.; Pilgrim, B. S.; Jones, G. R.; Bas-
suto, J. a. Proc. Natl. Acad. Sci. U. S. A. 2012, 109,
11605–11608; b) Pilgrim, B. S.; Gatland, A. E.; McTer-
nan, C. T.; Procopiou, P. A.; Donohoe, T. J. Org. Lett.
2013, 15, 6190–6193.
(5) Larock, R. C.; Yum, E. K. J. Am. Chem. Soc. 1991,
113, 6689–6690.
(6) Arcadi, A.; Cacchi, S.; Marinelli, F. Tetrahedron
Lett. 1992, 33, 3915–3918.
(7) a) Zeni, G.; Larock, R. C. Chem. Rev. 2006, 106,
4644–4680; b) D’Souza, D. M.; Muller, T. J. J. Chem.
Soc. Rev. 2007, 36, 1095–1108; c) Platon, M.; Amardeil,
R.; Djakovitch, L.; Hierso, J.-C. Chem. Soc. Rev. 2012,
41, 3929–3968; d) Wu, X.-F.; Neumann, H.; Beller, M.
Chem. Rev. 2013, 113, 1–35.
(15) Hardegger, L. A.; Habegger, J.; Donohoe, T. J.
Org. Lett. 2015, 17, 3222–3225.
(16) Sivanandan, S. T.; Shaji, A.; Ibnusaud, I.;
Seechurn, C. C. C. J.; Colacot, T. J. Eur. J. Org. Chem.
2015, 2015, 38–49.
(17) Gatland, A. E.; Pilgrim, B. S.; Procopiou, P. A.;
Donohoe, T. J. Angew. Chem. Int. Ed. 2014, 53, 14555–
14558.
(8) Johansson, C. C. C.; Colacot, T. J. Angew. Chem.
Int. Ed. 2010, 49, 676–707.
(9) a) Satoh, T.; Kawamura, Y.; Miura, M.; Nomura,
M. Angew. Chem. Int. Ed. 1997, 36, 1740–1742; b)
Palucki, M.; Buchwald, S. L. J. Am. Chem. Soc. 1997,
119, 11108–11109; c) Hamann, B. C.; Hartwig, J. F. J. Am.
Chem. Soc. 1997, 119, 12382–12383.
(18) a) Marion, N.; Nolan, S. P. Acc. Chem. Res. 2008,
41, 1440–1449; b) Fortman, G. C.; Nolan, S. P. Chem.
Soc. Rev. 2011, 40, 5151–5169; c) Lundgren, R. J.; Stra-
diotto, M. Chem. Eur. J. 2012, 18, 9758–9769.
(19) a) Fox, J. M.; Huang, X.; Chieffi, A.; Buchwald, S.
L. J. Am. Chem. Soc. 2000, 122, 1360–1370; b) Carole,
W. A.; Bradley, J.; Sarwar, M.; Colacot, T. J. Org. Lett.
2015, 17, 5472–5475.
(10) For selected reports on the arylation of carbonyl
compounds, see: a) Martín, R.; Buchwald, S. L. An-
gew. Chem. Int. Ed. 2007, 46, 7236–7239; b) Grasa, G.
A.; Colacot, T. J. Org. Lett. 2007, 9, 5489–5492; c)
Grasa, G. A.; Colacot, T. J. Org. Process Res. Dev.
2008, 12, 522–529; d) Biscoe, M. R.; Buchwald, S. L.
Org. Lett. 2009, 11, 1773–1775; e) Hesp, K. D.;
Lundgren, R. J.; Stradiotto, M. J. Am. Chem. Soc. 2011,
133, 5194–5197; f) Johansson Seechurn, C. C. C.;
Parisel, S. L.; Colacot, T. J. J. Org. Chem. 2011, 76,
7918–7932; g) Crawford, S. M.; Alsabeh, P. G.; Stra-
diotto, M. Eur. J. Org. Chem. 2012, 2012, 6042–6050;
h) Zheng, B.; Jia, T.; Walsh, P. J. Org. Lett. 2013, 15,
4190–4193; i) Raders, S. M.; Jones, J. M.; Semmes, J. G.;
(20) Marelli, E.; Corpet, M.; Davies, S. R.; Nolan, S. P.
Chem. Eur. J. 2014, 20, 17272–17276.
(21) a) Cacchi, S.; Fabrizi, G. Chem. Rev. 2005, 105,
2873–2920; b) Platon, M.; Amardeil, R.; Djakovitch,
L.; Hierso, J.C. Chem. Soc. Rev. 2012, 41, 3929–3968.
(22) This approach has been successfully used by
Spergel and coworkers, although their protocol has
major drawbacks regarding substrate scope (only
electron poor aniline derivatives) and efficiency (20%
loading of a well-defined Pd-NHC complex was nec-
8
ACS Paragon Plus Environment