ORGANIC
LETTERS
2012
Vol. 14, No. 3
792–795
Direct Glycosylation of Unprotected and
Unactivated Carbohydrates under Mild
Conditions
Matthias Pfaffe and Rainer Mahrwald*
Institute of Chemistry, Humboldt-University, Brook-Taylor Str. 2, 12489 Berlin,
Germany
Received December 13, 2011
ABSTRACT
Ligand exchange acetalization of acetals in the presence of catalytic amounts of mandelic acid and titanium tert-butoxide is reported. This
transformation is successfully extended to glycosylation of unprotected and unactivated pentoses. Even unreactive pentoses such as
D-arabinose or D-lyxose can be transformed by this new methodology into corresponding isopropyl glycosides.
Glycoconjugates or glycosides are very important ex-
amples of biomolecules. Due to different arranged and
configured hydroxyl groups of carbohydrates a general
applicable chemical synthesis to glycosides of all carbohy-
drates does not exist. Therefore the syntheses of glycosides
have been of great interest for a long time. In order to
achieve the required stereo-, chemo-, and regioselectivity
many different and complex methods of glycosidation
have been developed. Frequently, these synthetic maneu-
versare associatedwithanextensivehandlingof protecting
groups and additional activation of the anomeric car-
bon atom.1 In order to avoid these multistep approaches
to defined glycosides, several attempts have been made
to increase and to utilize reactivity differences between
the hemiacetal function and the remaining unprotected
hydroxyl groups of carbohydrates.2Also, methods have
been developed to deploy unprotected and unacti-
vated carbohydrates in direct glycosidation processes.
These transformations are associated with high reaction
(4) (a) Schmidt, R. R. Pure Appl. Chem. 1989, 61, 1257. (b) Schmidt,
R. R. In Modern Methods in Carbohydrate Synthesis; Khan, S. H., Neill,
R. A., Eds.; Harwood Academic Publishers: 1996. (c) Vauzeilles, B.; Dausse,
B.; Palmier, S.; Beau, J.-M. Tetrahedron Lett. 2001, 42, 7567.
(5) (a) Bishop, C. T.; Cooper, F. P. Can. J. Chem. 1963, 41, 2743.
(b) Fischer, E. Chem. Berichte 1893, 26, 2400. (c) Fischer, E. Chem.
Berichte 1895, 28, 1145. (d) Capon, B. Chem. Rev. 1969, 69. (e) Izumi,
M.; Fukase, K.; Kusumoto, S. Biosci. Biotechnol. Biochem. 2002, 66,
211. (f) Lee, R. T.; Lee, Y. C. Carbohydr. Res. 1974, 37, 193. (g) Wu, J.;
Serianni, A. S. Carbohydr. Res. 1991, 210, 51. (h) Wessel, H. P. Carbo-
hydr. Chem. 1988, 7, 263. (i) Mowery, D. F., Jr. J. Phys. Chem. 1974, 78,
1918. (k) Simon, E.; Cook, K.; Pritchard, M. R.; Stripe, W.; Bruch, M.;
Bendinskas, K. J. Chem. Educ. 2010, 87, 739. (l) Damez, C.; Bouquillon,
ꢀ
S.; Harakat, D.; Henin, F.; Muzart, J.; Pezron, I.; Komunjer, L.
Carbohydr. Res. 2007, 342, 154. (m) Evans, M. E.; Angyal, S. J.
Carbohydr. Res. 1972, 25, 43. (n) Angyal, S. J.; Bodkin, C. L.; Mills,
J. A.; Pojer, P. M. Aust. J. Chem. 1977, 30, 1259. (o) Angyal, S. J.;
Bodkin, C. L.; Parrish, F. W. Aust. J. Chem. 1975, 28, 1541.
(1) For current and comprehensive overviews in this field, see:
(a) Toshima, K.; Sasaki, K. In Comprehensive Glycoscience; Kamerling,
J. P., Ed.; Elsevier: 2007; Vol. 1, pp 261À310. (b) Brito-Arias, M. Synthesis
and Characterization of Glycosides; Springer: 2007. (c) Demchenko, A. V.
Handbook of Chemical Glycosylation; WILEY-VCH: Weinheim, 2008.
(2) (a) Hannesian, S.; Lou, B. Chem. Rev. 2000, 100, 4443.
(b) Bernardes, G. J. L.; Gamblin, D. P.; Davis, B. G. Angew. Chem.,
Int. Ed. 2006, 45, 4007.
ꢁ
(6) (a) Ferrieres, V.; Bertho, J.-N.; Plusquellec, D. Tetrahedron Lett.
ꢁ
1995, 36, 2749. (b) Bertho, J.-N.; Ferrieres, V.; Plusquellec, D. J. Chem.
Soc., Chem. Commun. 1995, 1391. (c) Velty, R.; Benvegnu, T.; Gelin, M.;
Privat, E.; Plusquellec, D. Carbohydr. Res. 1997, 299, 7. (d) Regeling, H.;
Zwanenburg, B.; Chittenden, G. J. F. Carbohydr. Res. 1998, 314, 267.
ꢁ
(3) (a) Gorityala, B. K.; Ma, J.; Pasunooti, K. K.; Cai, S.; Liu, X.-W.
ꢀ
(e) Ferrieres, V.; Benvegnu, T.; Lefeuvre, M.; Plusquellec, D.; Mack-
Green Chem. 2011, 13, 573. (b) Munoz, F. J.; Andre, S.; Gabius, H.-J.;
enzie, G.; Watson, M. J.; Haley, J. A.; Goodby, J. W.; Pindak, R.;
ꢁ
Sinisterra, J. V.; Hernaiz, M. J.; Linhardt, R. J. Green Chem. 2009, 11,
373. (c) Park, T.-J.; Weiwer, M.; Yuan, X.; Baytas, S. N.; Munoz, E. M.;
Murugesan, S.; Linhardt, R. J. Carbohydr. Res. 2007, 342, 614.
(d) Guchhait, G.; Misra, A. Q. K. Catal. Commun. 2011, 14, 52.
(e) Mamidyqala, S. K.; Finn, M. G. J. Org. Chem. 2009, 74, 8417.
Durbin, M. K. J. Chem. Soc., Perkin Trans. 2 1999, 951. (f) Ferrieres, V.;
Bertho, J.-N.; Plusquellec, D. Carbohydr. Res. 1998, 311, 25. (g) Blixt,
O.; Allin, K.; Pereira, L.; Datta, A.; Paulson, J. C. J. Am. Chem. Soc.
ꢀ
2002, 124. (h) Auge, J.; Sizun, G. Green Chem. 2009, 11, 1179. (i) Joniak,
D.; Polakova, M. J. Serb. Chem. Soc. 2001, 66, 81.
r
10.1021/ol203329u
Published on Web 01/20/2012
2012 American Chemical Society