Mesoporous Catalysts for Oxidation Reactions
A R T I C L E S
temperatures, which are usually ambient, the catalyst and
product phases may be separated by phase separation; the
catalyst phase is reused and the product is worked up in the
usual manner. Numerous biphasic media have been discussed
in the literature that include using catalysts in aqueous, fluorous,
ionic liquid, super critical fluid, and other liquid phases. Since
heteropoly acids can form complexes with or be dissolved in
diethyl ether, an interesting twist especially useful for oxidation
with the acidic H5PV2Mo10O40 was use the inexpensive poly-
(ethylene glycol) as solvent for aerobic oxidation of alcohols,
dienes, and sulfides and Wacker type oxidations.20 Beyond the
simple use of poly(ethylene glycol) as solvent, the attachment
of both hydrophilic poly(ethylene glycol) and hydrophobic poly-
(propylene glycol) to silica by the sol-gel synthesis leads to
solid particles that upon dispersion in organic solvents lead to
liquidlike phases termed solvent-anchored supported liquid-
phase catalysis.21 The balance of hydrophilicity-hydrophobicity
of the surface is important for tweaking the catalytic activity.
Finally, it has been shown that a Na12[(WZnZn2(H2O)2]-
[(ZnW9O34)2] assembled in situ in water is a very effective
catalyst for oxidation of alcohols with hydrogen peroxide in
aqueous biphasic media.22
Polyoxometalate based hybrid compounds23 have been con-
structed either by formation of covalent bonds between organic
and inorganic moieties or by creation of electrostatic interac-
tions24 between the inorganic and organic components. Poly-
oxometalates are also important as building units of supramo-
lecular complexes since they can exhibit diverse self-assembly
properties for such supramolecular materials, thus controlling
the formation of n-dimensional organic-inorganic hybrid
networks in self-organization processes. Previously such an
approach was used to prepare well-defined polyoxometalate-
containing films.25 To realize the potential self-assembly proper-
Figure 1. Ball and stick model of the [(WZnTM2(H2O)2][(ZnW9O34)2]}q-
polyoxometalate.
In this context, it was also found that the transition-metal-
substituting polyoxometalates were stable and effective catalysts
for oxidation with hydrogen peroxide.12 For example, the
manganese analogue of this polyoxometalate was originally
successfully used for the epoxidation of more nucleophilic
alkenes13 and then for oxidation of additional functional units.14
Just recently, the [(WZnZn2(H2O)2][(ZnW9O34)2]}12- compound
has been investigated as an exceptionally active catalyst for the
chemo- and diastereoselective oxidation of allylic alcohols with
hydrogen peroxide.15
Along with the development of concepts, synthetic techniques,
and mechanistic understanding of the use of polyoxometalates
as efficient oxidation catalysts, future practical application of
polyoxometalate oxidation catalysis will also require methods
for catalyst “engineering” to aid in catalyst recovery and recycle.
In general one can discern between two broad approaches. The
first basic approach is to immobilize a catalyst with proven
catalytic properties onto a solid support leading to a catalytic
system that may be filtered and reused. Such approaches include
concepts such as simple use of catalysts as insoluble bulk
material,16 which in some cases dissolves under reaction
conditions,17 impregnation of a catalyst onto a solid and usually
inert matrix,18 and attachment through covalent or ionic bonds
of a catalyst to a support.19 The second basic approach is to
use biphasic liquid-liquid systems, such that at separation
(18) (a) Neumann, R.; Levin, M. J. Org. Chem. 1991, 56, 5707-5710. (b)
Fujibayashi, S.; Nakayama, K.; Hamamoto, M.; Sakaguchi, S.; Nishiyama,
Y.; Ishii, Y. J. Mol. Catal. A 1996, 110, 105-117. (c) Nakayama, K.;
Hamamoto, M.; Nishiyama, Y.; Ishii, Y. Chem. Lett. 1993, 1699-1702.
(d) Xu, L.; Boring, E.; Hill, C. L. J. Catal. 2000, 195, 394-405. (d)
Khenkin, A. M.; Neumann, R.; Sorokin, A. B.; Tuel, A. Catal. Lett. 1999,
63, 189-192. (e) Gall, R. D.; Hill, C. L.; Walker, J. E. Chem. Mater. 1996,
8, 2523-2527.
(19) (a) Neumann, R.; Miller, H. J. Chem. Soc., Chem. Commun. 1995, 2277-
2278. (b) Okun, N. M.; Anderson, T. M.; Hill, C. L. J. Am. Chem. Soc.
2003, 125, 3194-3195. (c) Okun, N. M.; Anderson, T. M.; Hill, C. L. J.
Mol. Catal. A 2003, 197, 283-290.
(20) Haimov, A.; Neumann, R. Chem. Commun. 2002, 876-877.
(21) (a) Neumann, R.; Cohen, M. Angew. Chem., Int. Ed. Engl. 1997, 36, 1738-
1740. (b) Cohen, M.; Neumann, R. J. Mol. Catal. A 1999, 146, 293-300.
(22) Sloboda-Rozner, D.; Alsters, P. L.; Neumann, R. J. Am. Chem. Soc. 2003,
125, 5280-5281.
(23) (a) Gouzerh, P.; Proust, A. Chem. ReV. 1998, 98, 77-111. (b) Villanneau,
R.; Delmont, R.; Proust, A.; Gouzerh, P. Chem. Eur. J. 2000, 6, 1184-
1192. (c) Sanchez, C.; de A. A. Soler-Illia, G. J.; Ribot, F.; Lalot, T.; Mayer,
C. J.; Cabuil, V. Chem. Mater. 2001, 13, 3061-3083. (d) Hu, C.; Wang,
trymag.org/cji/2001/036022re.htm
(24) (a) Coronado, E.; Gomez-Garc´ıa, C. J. Chem. ReV. 1998, 98, 273-298.
(b) Le Maguere`s, P.; Hubig, S. M.; Lindeman, S. V.; Veya, P.; Kochi, J.
K. J. Am. Chem. Soc. 2000, 122, 10 073-10 082. (c) Clemente-Leo´n, M.;
Coronado, E.; Gime´nez-Saiz, C.; Go´mez-Garc´ıa, C. J.; Mart´ınez-Ferrero,
E.; Almeida, M.; Lopes, E. B. J. Mater. Chem. 2001, 11, 2176-2180. (d)
Otero, T. F.; Cheng, S. A.; Alonso, D.; Huerta, F. J. Phys. Chem. B 2000,
104, 10528-10533. (e) Otero, T. F.; Cheng, S. A.; Huerta, F. J. Phys.
Chem. B 2000, 104, 10522-10527. (f) Freund, M. S.; Karp, C.; Lewis, N.
S. Inorg. Chim. Acta 1995, 240, 447-451. (g) Cheng, S. A.; Ferna´ndez-
Otero, T.; Coronado, E.; Go´mez-Garc´ıa, C. J.; Mart´ınez-Ferrero, E.;
Gime´nez-Saiz, C. J. Phys. Chem. B 2002, 106, 7585-7591. (h) Ferna´ndez-
Otero, T.; Cheng, S. A.; Coronado, E.; Mart´ınez-Ferrero, E.; Go´mez-Garc´ıa,
C. J. Chem. Phys. Chem. 2002, 3, 808-811. (i) Polarz, S.; Smarsly, B.;
Go¨ltner, C.; Antonietti, M. AdV. Mater. 2000, 12, 1503-1507. (j) Yun, S.
K.; Maier, J. Chem. Mater. 1999, 11, 1644-1649. (k) Coronado, E.; Galan-
Mascaros, J. R.; Gimenez-Saiz, C.; Gomez-Garcia, C. J.; Triki, S. J. Am.
Chem. Soc. 1998, 120, 4671-4681.
(12) (a) Khenkin, A. M.; Hill, C. L. MendeleeV Commun. 1993, 140-141. (b)
Zhang, X.; Chen, Q.; Duncan, D. C.; Lachicotte, R. J.; Hill, C. L. Inorg.
Chem. 1997, 36, 4381-4386. (c) Zhang, X.; Chen, Q.; Duncan, D. C.;
Campana, C. F.; Hill, C. L. Inorg. Chem. 1997, 36, 4208-4215. (d) Zhang,
X.; Anderson, T. M.; Chen, Q.; Hill, C. L. Inorg. Chem. 2001, 40, 418-
419. (e) Nozaki, C.; Kiyoto, I.; Minai, Y.; Misono, M.; Mizuno, N. Inorg.
Chem. 1999, 38, 5724-5729. (f) Mizuno, N.; Nozaki, C.; Kiyoto, I.;
Misono, M. J. Catal. 1999, 182, 285-288. (g) Mizuno, N.; Kiyoto, I.;
Nozaki, C.; Misono, M. J. Catal. 1999, 181, 171-174. (h) Mizuno, N.;
Nozaki, C.; Kiyoto, I.; Misono, M. J. Am. Chem. Soc. 1998, 120, 9267-
9272.
(13) Neumann, R.; Gara, M. J. Am. Chem. Soc. 1994, 116, 5509-5510. (b)
Neumann, R.; Gara, M. J. Am. Chem. Soc. 1995, 117, 5066-5074.
(14) (a) Neumann, R.; Juwiler, D. Tetrahedron 1996, 47, 8781-8788. (b)
Neumann, R.; Khenkin, A. M.; Juwiler, D.; Miller, H.; Gara, M. J. Mol.
Catal. 1997, 117, 169-183.
(15) (a) Adam, W.; Alsters, P. L.; Neumann, R.; Saha-Mo¨ller, C. R.; Sloboda-
Rozner, D.; Zhang, R. Synlett 2002, 2011-2014. (b) Adam, W.; Alsters,
P. L.; Neumann, R.; Saha-Mo¨ller, C. R.; Sloboda-Rozner, D.; Zhang, R. J.
Org. Chem. 2003, 68, 1721-1728.
(16) Yamaguchi, K.; Mizuno, N. New J. Chem. 2002, 26, 972-974.
(17) (a) Xi, Z. W.; Zhou, N.; Sun, Y.; Li, K. L. Science 2001, 292, 1139-
1141. (b) Sun, Y.; Xi, Z. W.; Cao, G. Y. J. Mol. Catal. A 2001, 166, 219-
224. (c) Xi, Z. W.; Wang, H. P.; Sun, Y.; Zhou, N.; Cao, G. Y.; Li, M. J.
Mol. Catal. A 2001, 168, 299-301.
9
J. AM. CHEM. SOC. VOL. 126, NO. 3, 2004 885