LETTER
Total Synthesis of Furanaphin
1791
MeO
OR OR
TBSOTf (3 equiv)
2,6-lutidine (4 equiv)
OH
O
MeO
OR OR
LiAlH4 (2 equiv)
BBr3 (10 equiv)
CH2Cl2, 0 °C
10 min, quant.
O
THF, 0 °C
10 min, quant.
CH2Cl2, 0°C
12 h, 18 %
OH
MeO
CO2Et
HO
MeO
furanaphin (1)
14: R = TBS
15: R = TBS
3
BBr3 (5 equiv)
CH2Cl2, 0 °C, 2 h
50%
OH OH
O
OR OR OR
OR OR OR
TBSOTf (5 equiv)
2,6-lutidine (10 equiv)
LiAlH4 (2 equiv)
BCl3 (10 equiv)
CH2Cl2, 0 °C to r.t.
10 h, 87%
CH2Cl2, 0 °C
CO2Et 10 min, quant.
MeO
THF, 0 °C to r.t.
10 min, quant.
CO2Et
OH
MeO
MeO
18: R = TBS
16
17: R = TBS
Scheme 4 Synthesis of furanaphin (1)
(2) Brown, B. R.; Ekstrand, T.; Johnson, A. W.; MacDonald,
S. F.; Todd, A. R. J. Chem. Soc. 1952, 4925.
(3) Cameron, D. W.; Cromartie, R. I. T.; Kingston, D. G. I.;
Todd, L. J. Chem. Soc. 1964, 51.
(4) Cameron, D. W.; Chan, H. W.-S.; Kingston, D. G. I.
J. Chem. Soc. 1965, 4363.
(5) Cameron, D. W.; Chan, H. W.-S. J. Chem. Soc. C 1966,
1825.
BF3·2AcOH complex made a remarkable difference (en-
tries 2, 4, 6, 8 and 10), even for the reactions with sub-
strates having an electron-withdrawing group (entries 6
and 10).
With the desired product 3 obtained in 91% yield (Table
1, entry 10),20 the hydroxyl and acetyl groups of 3 were
protected as a silyl ether and a silyl enol ether (TBSOTf,
2,6-lutidine in CH2Cl2), respectively (Scheme 4). Reduc-
tion of 14 with LiAlH4 at 0 °C gave alcohol 15 in quanti-
tative yield; subsequent treatment of 15 with BBr3 cleaved
the methyl and silyl ethers and induced spontaneous cycli-
zation under acidic reaction conditions to give furanaphin
(1) in 18% yield.
(6) Bowie, J. H.; Cameron, D. W.; Findlay, J. A.; Quartey,
J. A. K. Nature 1966, 210, 395.
(7) Banks, H. J.; Cameron, D. W. Aust. J. Chem. 1972, 25, 2199.
(8) Horikawa, M.; Hashimoto, T.; Asakawa, Y.; Takaoka, S.;
Tanaka, M.; Kaku, H.; Nishii, T.; Yamaguchi, K.; Masu, H.;
Kawase, M.; Suzuki, S.; Sato, M.; Tsunoda, T. Tetrahedron
2006, 62, 9072.
(9) Horikawa, M.; Tanaka, M.; Kaku, H.; Nishii, T.; Tsunoda, T.
Tetrahedron 2008, 64, 5515.
(10) Horikawa, M.; Hoshiyama, T.; Matsuzawa, M.; Shugyo, T.;
Tanaka, M.; Suzuki, S.; Sato, M.; Ito, T.; Asakawa, Y.;
Kaku, H.; Nishii, T.; Inai, M.; Takahashi, S.; Tsunoda, T.
J. Nat. Prod. 2011, 74, 1812.
(11) Horikawa, M.; Noguchi, T.; Takaoka, S.; Kawase, M.; Sato,
M.; Tsunoda, T. Tetrahedron 2004, 60, 1229.
(12) Horikawa, M.; Kikuchi, D.; Imai, T.; Tanaka, M.; Kaku, H.;
Nishii, T.; Inai, M.; Takahashi, S.; Tsunoda, T. Heterocycles
2012, 85, 95.
As an alternative route, selective cleavage of the methyl
ether of 3 was carried out with BCl3 to give 16, which was
silylated with TBSOTf (5 equiv) in the presence of 2,6-
lutidine in CH2Cl2 to afford silyl enol ether 17 in quanti-
tative yield. After reduction of 17, the resulting alcohol 18
was subjected to cleavage of the ether linkages with BBr3
to give 121 in 50% yield. All spectroscopic data (1H, 13C
NMR, IR, and HRMS) for the synthetic furanaphin (1)
agreed with those reported previously in the literature.11
(13) Losey, J. E.; Ives, A. R.; Harmon, J.; Ballantyne, F.; Brown,
C. Nature 1997, 388, 269.
(14) Tsuchida, T.; Koga, R.; Horikawa, M.; Tsunoda, T.; Maoka,
T.; Matsumoto, S.; Simon, J.; Fukatsu, T. Science 2010, 330,
1102.
(15) Moran, N. A.; Jarvik, T. Science 2010, 328, 624.
(16) (a) Rizzacasa, M. A.; Sargent, M. V. Aust. J. Chem. 1987,
40, 1737. (b) For an alternative synthetic route to 4, see:
Hauser, F. M.; Sengupta, D.; Corlett, S. A. J. Org. Chem.
1994, 59, 1967.
(17) (a) Rizzacasa, M. A.; Sargent, M. V. Aust. J. Chem. 1988,
41, 1087. (b) Singh, S. B.; Graham, P. L.; Reamer, R. A.;
Cordingley, M. G. Bioorg. Med. Chem. Lett. 2001, 11, 3143.
(18) Blatt, A. H. Org. React. 1942, 1, 342.
(19) The Fries rearrangement using the BF3·2CH3CO2H complex
was reported. The complex acts as an acyl donor, but the
rearrangement of reactants having electron-withdrawing
groups was not investigated, see: Davies, J. S. H.; McCrea,
P. A.; Norris, W. L.; Ramage, G. R. J. Chem. Soc. 1950,
3206.
In summary, we have achieved the total synthesis of fu-
ranaphin (1) by utilizing the Fries rearrangement as a key
step and found that the BF3·2AcOH complex satisfactorily
provided the desired product. Further applications of this
reaction and biological activities of 1 are under investiga-
tion in our laboratory and will be reported in due course.
Acknowledgment
This work was supported partially by a Grant-in-Aid for Scientific
Research (C) from MEXT (the Ministry of Education, Culture,
Sports, Science and Technology of Japan). We are also thankful to
MEXT-Senryaku, 2008-2012.
References and Notes
(1) Duewell, H.; Human, J. P. E.; Johnson, A. W.; MacDonald,
S. F.; Todd, A. R. Nature 1948, 162, 759.
(20) Fries Rearrangement of 4: To a solution of acetate 4
(104.1 mg, 0.327 mmol) in CH2Cl2 (0.5 mL) was added
© Georg Thieme Verlag Stuttgart · New York
Synlett 2012, 23, 1789–1792