10.1002/anie.201708784
Angewandte Chemie International Edition
COMMUNICATION
Chu, R. M. Coates, J. Org. Chem. 1992, 57, 4590-4597; g) T. Tanaka,
K. Maeda, H. Mikamiyama, Y. Funakoshi, K. Uenaka, C. Iwata,
Tetrahedron 1996, 52, 4257-4268; h) Y. Chai, D. A. Vicic, M. C.
McIntosh, Org. Lett. 2003, 5, 1039-1042; i) J. M. Hutchison, H. A.
Lindsay, S. S. Dormi, G. D. Jones, D. A. Vicic, M. C. McIntosh, Org.
Lett. 2006, 8, 3663-3665; j) M. Anada, M. Tanaka, N. Shimada, H.
Nambu, M. Yamawaki, S. Hashimoto, Tetrahedron 2009, 65, 3069-
3077; k) G. M. Sammis, E. M. Flamme, H. Xie, D. M. Ho, E. J.
Sorensen, J. Am. Chem. Soc. 2005, 127, 8612-8613; l) H. Xie, G. M.
Sammis, E. M. Flamme, C. M. Kraml, E. J. Sorensen, Chem. Eur. J.
2011, 17, 11131-11134.
In summary, we have developed an asymmetric reductive
allylation of aldehydes that affords tertiary alkyl stereocenters
using chiral biphenol catalysts. The reaction proceeds via the
sigmatropic rearrangement of a transient enantioenriched allylic
diazene intermediate; a process mechanistically distinct from the
reductive coupling of boronic acids with tosylhydrazones via
diazo intermediates.[19] Both allylation and crotylation reactions
provide access to 1,4-dienes bearing tertiary alkyl-substituted
stereocenters in excellent yields and high enantioselectivities.
Key aspects of the methodology include the exclusive
generation of (E)-alkenes by allylic transposition, and the
traceless installation of two stereocenters within acyclic systems.
Further exploration of the observed reactivity within the context
of asymmetric catalysis is underway and will be reported in due
course.
[9]
a) W. Qi, M. C. McIntosh, Org. Lett. 2008, 10, 357-359; b) M. L.
Shrestha, W. Qi, M. C. McIntosh, J. Org. Chem. 2017, 82, 8359-8370.
[10] M. Movassaghi, O. K. Ahmad, Angew. Chem. Int. Ed. 2008, 47, 8909-
8912; M. Movassaghi, O. K. Ahmad, Angew. Chem. 2008, 120, 9041-
9044.
[11] D. S. Barnett, P. N. Moquist, S. E. Schaus, Angew. Chem. Int. Ed. 2009,
48, 8679-8682; D. S. Barnett, P. N. Moquist, S. E. Schaus, Angew.
Chem. 2009, 121, 8835-8838.
Acknowledgements
[12] a) D. H. Appella, Y. Moritani, R. Shintani, E. M. Ferreira, S. L. Buchwald,
J. Am. Chem. Soc. 1999, 121, 9473-9474; b) P. Tolstoy, M. Engman, A.
Paptchikhine, J. Bergquist, T. L. Church, A. W. M. Leung, P. G.
Andersson, J. Am. Chem. Soc. 2009, 131, 8855-8860; c) S. G. Ouellet,
J. B. Tuttle, D. W. C. MacMillan, J. Am. Chem. Soc. 2005, 127, 32-33;
d) J. W. Yang, M. T. Hechavarria Fonseca, N. Vignola, B. List, Angew.
Chem. Int. Ed. 2005, 44, 108-110; J. W. Yang, M. T. Hechavarria
Fonseca, N. Vignola, B. List, Angew. Chem. 2005, 117, 110-112.
[13] a) K. Dong, Y. Li, Z. Wang, K. Ding, Angew. Chem. Int. Ed. 2013, 52,
14191-14195; K. Dong, Y. Li, Z. Wang, K. Ding, Angew. Chem. 2013,
125, 14441-14445.; b) T. Nishimine, K. Fukushi, N. Shibata, H. Taira, E.
Tokunaga, A. Yamano, M. Shiro, N. Shibata, Angew. Chem. Int. Ed.
2014, 53, 517-520; T. Nishimine, K. Fukushi, N. Shibata, H. Taira, E.
Tokunaga, A. Yamano, M. Shiro, N. Shibata, Angew. Chem. 2014, 126,
527-530; c) Y. Liang, G. C. Fu, J. Am. Chem. Soc. 2015, 137, 9523-
9526; d) E. Massolo, M. Benaglia, M. Orlandi, S. Rossi, G. Celentano,
Chem. Eur. J. 2015, 21, 3589-3595.
The research was supported by the National Institutes of Health
(R01 GM078240 to SES) and the National Science Foundation
(CHE1361173 to RJT).
Keywords: asymmetric synthesis • organocatalysis • diazene •
allylation • hydrazones
[1]
a) H. M. R. Hoffmann, Angew. Chem. Int. Ed. 1969, 8, 556-577; H. M.
R. Hoffmann, Angew. Chem. 1969, 81, 597-618; b) W. Oppolzer, V.
Snieckus, Angew. Chem. Int. Ed. 1978, 17, 476-486; W. Oppolzer, V.
Snieckus, Angew. Chem. 1978, 90, 506-516; c) G. V. Boyd, in Double-
Bonded Functional Groups (1989) (Ed.: S. Patai), John Wiley & Sons,
Inc., Chichester, UK, 2010, pp. 477-525.
[2]
[3]
[4]
J.-L. Ripoll, Y. Vallée, Synthesis 1993, 1993, 659-677.
A. Jabbari, E. J. Sorensen, K. N. Houk, Org. Lett. 2006, 8, 3105-3107.
a) Y. Jiang, A. B. Diagne, R. J. Thomson, S. E. Schaus, J. Am. Chem.
Soc. 2017, 139, 1998-2005. b) D. A. Mundal, K. E. Lutz, R. J. Thomson,
J. Am. Chem. Soc. 2012, 134, 5782-5785. c) A. B. Diagne, S. Li, G. A.
Perkowski, M. Mrksich, R. J. Thomson, ACS. Comb. Sci. 2015, 17,
658-662.
[14] D. Ameen, T. J. Snape, Med. Chem. Commun. 2013, 4, 893-907.
[15] a) A. H. Cherney, N. T. Kadunce, S. E. Reisman, Chem. Rev. 2015,
115, 9587-9652; b) E. J. Tollefson, L. E. Hanna, E. R. Jarvo, Acc.
Chem. Res. 2015, 48, 2344-2353.
[16] a) M. Yus, J. C. González-Gómez, F. Foubelo, Chem. Rev. 2011, 111,
7774-7854; b) C. Diner, K. J. Szabó, J. Am. Chem. Soc. 2017, 139, 2-
14.
[5]
[6]
A. Kleemann, J. Engel, Pharmaceutical Substances: Syntheses,
Patents, Applications, 4th ed., Thieme, Stuttgart, 2001.
[17] a) P. A. Wender, A. J. Dyckman, Org. Lett. 1999, 1, 2089-2092; b) F.
Peng, M. Dai, A. R. Angeles, S. J. Danishefsky, Chem. Sci. 2012, 3,
3076-3080.
a) S. Lou, P. N. Moquist, S. E. Schaus, J. Am. Chem. Soc. 2007, 129,
15398-15404; b) S. Lou, S. E. Schaus, J. Am. Chem. Soc. 2008, 130,
6922-6923; c) J. A. Bishop, S. Lou, S. E. Schaus, Angew. Chem. Int.
Ed. 2009, 48, 4337-4340; J. A. Bishop, S. Lou, S. E. Schaus, Angew.
Chem. 2009, 121, 4401-4404; d) G. Muncipinto, P. N. Moquist, S. L.
Schreiber, S. E. Schaus, Angew. Chem. Int. Ed. 2011, 50, 8172-8175;
G. Muncipinto, P. N. Moquist, S. L. Schreiber, S. E. Schaus, Angew.
Chem. 2011, 123, 8322-8325; e) Y. Jiang, S. E. Schaus, Angew. Chem.
Int. Ed. 2017, 56, 1544-1548; Y. Jiang, S. E. Schaus, Angew. Chem.
2017, 129, 1566-1570.
[18] a) M. B. Goren, O. Brokl, B. C. Das, E. Lederer, Biochemistry 1971, 10,
72-81; b) S. Balieu, G. E. Hallett, M. Burns, T. Bootwicha, J. Studley, V.
K. Aggarwal, J. Am. Chem. Soc. 2015, 137, 4398-4403. c) M. Amat, N.
Llor, G. Guignard, J. Bosch, Synthesis 2016, 48, 2705-2720; d) S. Son,
G. C. Fu, J. Am. Chem. Soc. 2008, 130, 2756-2757. e) B. S. Davidson,
J. Org. Chem. 1991, 56, 6722-6724; f) Y. Shi, B. Jung, S. Torker, A. H.
Hoveyda, J. Am. Chem. Soc. 2015, 137, 8948-8964. g) D. Gouiffes, M.
Juge, N. Grimaud, L. Welin, M. P. Sauviat, Y. Barbin, D. Laurent, C.
Roussakis, J. P. Henichart, J. F. Verbist, Toxicon 1988, 26, 1129-1136;
h) A. Claraz, G. Sahoo, D. Berta, Á. Madarász, I. Pápai, P. M. Pihko,
Angew. Chem. Int. Ed. 2016, 55, 669-673. i) K. Mori, Bioorg. Med.
Chem. 2007, 15, 7505-7523; j) T. Ando, R. Yamakawa, Nat. Prod. Rep.
2015, 32, 1007-1041; k) J. E. Bello, J. S. McElfresh, J. G. Millar, Proc.
Natl. Acad. Sci. U. S. A. 2015, 112, 1077-1082; l) d. N. M. Motais, P.
d'Ettorre, Z. J. S. van, T. Wenseleers, J. E. Bello, J. G. Millar, J. Exp.
Biol. 2016, 219, 1632-1638.
[7]
[8]
a) W.-Y. Han, Z.-J. Wu, X.-M. Zhang, W.-C. Yuan, Org. Lett. 2012, 14,
976-979; b) X. Shi, W. F. Kiesman, A. Levina, Z. Xin, J. Org. Chem.
2013, 78, 9415-9423; c) R. Alam, C. Diner, S. Jonker, L. Eriksson, K. J.
Szabó, Angew. Chem. Int. Ed. 2016, 55, 14417-14421; R. Alam, C.
Diner, S. Jonker, L. Eriksson, K. J. Szabó, Angew. Chem. 2016, 128,
14629-14633.
a) J. L. Wood, J. A. Porco, J. Taunton, A. Y. Lee, J. Clardy, S. L.
Schreiber, J. Am. Chem. Soc. 1992, 114, 5898-5900; b) A. G. Myers, B.
Zheng, Tetrahedron Lett. 1996, 37, 4841-4844; c) D. S. Siegel, G. Piizzi,
G. Piersanti, M. Movassaghi, J. Org. Chem. 2009, 74, 9292-9304; d) N.
N. Girotra, N. L. Wendler, Tetrahedron Lett. 1982, 23, 5501-5504; e) E.
J. Corey, S. C. Virgil, J. Am. Chem. Soc. 1990, 112, 6429-6431; f) M.
[19] a) J. Barluenga, M. Tomás-Gamasa, F. Aznar, C. Valdés, Nat. Chem.
2009, 1, 494-499; b) M. C. Perez-Aguilar, C. Valdes, Angew. Chem. Int.
Ed. 2012, 51, 5953-5957; M. C. Pérez-Aguilar, C. Valdés, Angew.
Chem. 2012, 124, 6055-6059.
This article is protected by copyright. All rights reserved.