4444
M. Skwarczynski et al. / Bioorg. Med. Chem. Lett. 13 (2003) 4441–4444
examined. Prodrug 6 had a 10-fold higher water solubi-
lity than 3 and was converted to parent 3 through O–N
acyl migration with clear pH-dependency. This finding
supported the premise that this prodrug strategy based
on the O–N intramolecular acyl migration reaction has
significant advantages in toxicity and medical econom-
ics. Summarized, our studies of water-soluble prodrugs
in both paclitaxel and canadensol suggest that this
strategy can be applied to other 30-N-acyl taxoids with
similar promising results. However, it is important to
note that ‘O–N acyl-like’ migration for the docetaxel-
type prodrug is difficult to apply using our present pro-
drug strategy.
Damen, E. W. P.; Wiegerinck, P. H. G.; Braamer, L.; Sperling,
D.; de Vos, D.; Scheeren, H. W. Bioorg. Med. Chem. 2000, 8,
427. (d) Seligson, A. L.; Terry, R. C.; Bressi, J. C.; Douglass,
J. G., III; Sovak, M. Anti-Cancer Drugs 2001, 12, 305. (e)
Wrasidlo, W.; Gaedicke, G.; Guy, R. K.; Renaud, J.; Pitsinos,
E.; Nicolaou, K. C.; Reisfeld, R. A.; Lode, H. N. Bioconjugate
Chem. 2002, 13, 1093.
6. Hayashi, Y.; Skwarczynski, M.; Hamada, Y.; Sohma, Y.;
Kimura, T.; Kiso, Y. J. Med. Chem. 2003, 46, 3782.
7. Selected spectroscopic data for 10, mp 156–159 ꢁC, 1H
NMR (CD3OD, 400 MHz): d 7.50–7.43(m, 5H), 5.16 (d,
J=8.3Hz, 1H), 4.68 (d, J=8.4 Hz, 1H), 4.69–4.62 (m, 1H),
1.76–1.58 (m, 2H), 1.54–1.18 (m, 7H), 1.48 (s, 9H), 1.06–0.96
(m, 1H). HRMS (FAB+): calcd For C20H30NO5 [M++H]:
364.2124, found: 364.2128.
8. Bartnik, R.; Cebulska, Z.; Laurent, A. Tetrahedron Lett.
1983, 24, 4197.
9. Hamada, Y.; Ohtake, J.; Sohma, Y.; Kimura, T.; Hayashi,
Y.; Kiso, Y. Bioorg. Med. Chem. 2002, 10, 4155.
Acknowledgements
This research was supported in part by the Frontier
Research Program of the Ministry of Education,
Science and Culture of Japan, and grants from the
Ministry of Education, Science and Culture of Japan.
10. Hamada, Y.; Matsumoto, H.; Kimura, T.; Hayashi, Y.;
Kiso, Y. Bioorg. Med. Chem. Lett. 2003, 13, 2727.
11. Selected spectroscopic data for 6, mp 156–160 ꢁC, 1H
NMR (CD3OD, 400 MHz): d 8.08–8.06 (m, 2H), 7.76–7.71 (m,
1H), 7.66–7.50 (m, 6H), 7.38–7.34 (m, 1H), 6.41 (s, 1H), 5.93
(t, J=8.0 Hz, 1H), 5.59 (d, J=7.3Hz, 1H), 5.33(d, J=9.0 Hz,
1H), 4.97 (dd, J=9.6, 1.9 Hz, 1H), 4.82 (d, J=9.0 Hz, 1H),
4.31 (dd, J=6.5, 11.0 Hz, 1H), 4.17, 4.14 (2d, J=8.2 Hz, 2H),
3.72 (d, J=7.1 Hz, 1H), 2.84 (septet, J=7.0 Hz, 1H), 2.48–
2.41 (m, 1H), 2.27 (s, 3H), 2.16 (s, 3H), 1.92–1.85 (m, 1H), 1.85
(d, J=1.3 Hz, 3H), 1.81–1.74 (m, 1H), 1.62 (s, 3H), 1.46–1.40
(m, 1H), 1.28 (d, J=7.0 Hz, 3H), 1.25 (d, J=6.8 Hz, 3H), 1.12
(s, 3H), 1.10 (s, 3H). HRMS (FAB+): calcd For C44H54NO14
[M++H]: 820.3544, found: 820.3542. Purity was higher than
98% (HPLC analysis at 230 nm).
References and Notes
1. Wani, M. C.; Taylor, H. L.; Wall, M. E.; Coggon, P.;
McPhail, A. T. J. Am. Chem. Soc. 1971, 93, 2325.
2. Gueritte-Voegelein, F.; Guenard, D.; Lavelle, F.; Le Goff,
M. T.; Mangatal, L.; Potier, P. J. Med. Chem. 1991, 34, 992.
3. Zamir, L.; Caron, G.; Zheng, Y. F. US Patent, 6,410,756,
1997; Chem. Abstr. 1998, 128, 321780.
4. Lin, S.; Ojima, I. Exp. Opin. Ther. Pat 2000, 10, 869.
5. (a) For example: Nicolau, K. C.; Riemer, C.; Kerr, M. A.;
Rideout, D.; Wrasidlo, W. Nature 1993, 364, 464. (b) Khmel-
nitsky, Y. L.; Budde, C.; Arnold, M. J.; Usyatinsky, A.; Clark,
D. S.; Dordick, J. S. J. Am. Chem. Soc. 1997, 119, 11554. (c)
12. Canadensol 3 was synthesized via simple acylation (i-
0
.
PrCOOH, HOBt, EDC HCl) of 3 -amine group of Troc-
deprotected (Zn, AcOH, AcOEt) compound 16. Spectroscopic
data are identical with data from ref 3.