LETTER
Constrained Polyhydroxylated Dipeptides
2347
13.7 Hz, 2 H, PhCH2N), 3.63 (dd, J5,6 = 4.5 Hz, J6,OH = 6.3
Hz, 2 H, 2 × H-6), 3.34 (dt, 1 H, H-5), 2.65 (t, 1 H, OH).
Compound 8. [a]D = +35.5 (c 0.5, CHCl3). 1H NMR (400
MHz, CDCl3): d = 7.68 (d, J = 3.3 Hz, 1 H, Th), 7.38–7.17,
7.00–6.96 (2 × m, 16 H, 3 × Ph, Th), 6.81–6.72 (m, 4 H,
MeOPh), 4.69, 4.54 (2 × d, J = 11.8 Hz, 2 H, PhCH2O), 4.46
(d, J2,3 = 2.5 Hz, 1 H, H-2), 4.37, 4.31 (2 × d, J = 11.9 Hz, 2
H, PhCH2O), 4.29 (dd, J3,4 = 2.3 Hz, 1 H, H-3), 4.17 (dd, J5,6a
= 7.1 Hz, J6a,6b = 9.0 Hz, 1 H, H-6a), 4.12 (dd, J4,5 = 5.6 Hz,
1 H, H-4), 4.08, 3.99 (2 × d, J = 13.6 Hz, 2 H, PhCH2N), 3.92
(dd, J5,6b = 5.1 Hz, 1 H, H-6b), 3.77 (s, 3 H, Me), 3.67 (ddd,
1 H, H-5). Compound 9. [a]D = +2.5 (c 0.6, CHCl3). 1H NMR
(400 MHz, CDCl3): d = 9.30 (d, J = 1.3 Hz, 1 H, CHO),
7.40–7.20, 7.16–7.11 (2 × m, 15 H, 3 × Ph), 6.84 (s, 4 H,
MeOPh), 4.59, 4.51 (2 × d, J = 11.8 Hz, 2 H, PhCH2O), 4.44,
4.28 (2 × d, J = 11.7 Hz, 2 H, PhCH2O), 4.29 (dd, J5,6a = 7.7
Hz, J6a,6b = 9.3 Hz, 1 H, H-6a), 4.27, 3.76 (2 × d, J = 13.2 Hz,
2 H, PhCH2N), 4.11 (dd, J2,3 = 1.2 Hz, J3,4 = 1.5 Hz, 1 H, H-
3), 4.10 (dd, J4,5 = 4.3 Hz, 1 H, H-4), 4.09 (dd, J5,6b = 5.3 Hz,
1 H, H-6b), 3.78 (s, 3 H, Me), 3.68 (ddd, 1 H, H-5), 3.38 (dd,
1 H, H-2). 13C NMR (100 MHz, CDCl3): d = 204.7 (C-1),
153.9, 153.0, 115.4, 114.6 (MeOPh), 138.8, 137.5, 137.4,
129.1–127.5 (3 × Ph), 84.2 (C-3), 80.0 (C-4), 76.2 (C-2),
71.8 (PhCH2O), 71.4 (PhCH2O), 67.2 (C-6), 66.2 (C-5), 60.7
(PhCH2N), 55.8 (MeO).
References
(1) (a) Olson, G. L.; Bolin, D. R.; Bonner, M. P.; Bös, M.; Cook,
C. M.; Fry, D. C.; Graves, B. J.; Hatada, M.; Hill, D. E.;
Kahn, M.; Madison, V. S.; Rusiecki, V. K.; Sarabu, R.;
Sepinwall, J.; Vincent, G. P.; Voss, M. E. J. Med. Chem.
1993, 36, 3039. (b) Gante, J. Angew. Chem., Int. Ed. Engl.
1994, 33, 1699.
(2) (a) Peptide Secondary Structure Mimetics In Tetrahedron
Symposia-in-Print, Vol. 49; Kahn, M., Ed.; Elsevier:
Amsterdam, 1993, 3433–3689. (b) Hanessian, S.;
McNaughton-Smith, G.; Lombart, H.-G.; Lubell, W. D.
Tetrahedron 1997, 53, 12789; and references cited therein.
(3) (a) Halab, L.; Gosselin, F.; Lubell, W. D. Biopolymers 2000,
55, 101. (b) Dietrich, E.; Lubell, W. D. J. Org. Chem. 2003,
68, 6988.
(4) (a) Gillespie, P.; Cicariello, J.; Olson, G. L. Biopolymers
1997, 43, 191. (b) Takeuchi, Y.; Marshall, G. R. J. Am.
Chem. Soc. 1998, 120, 5363. (c) Belvisi, L.; Bernardi, A.;
Manzoni, L.; Potenza, D.; Scolastico, C. Eur. J. Org. Chem.
2000, 2563.
(5) (a) Lombart, H.-G.; Lubell, W. D. J. Org. Chem. 1994, 59,
6147. (b) Lombart, H.-G.; Lubell, W. D. J. Org. Chem.
1996, 61, 9437.
(6) (a) Polyak, F.; Lubell, W. D. J. Org. Chem. 2001, 66, 1171.
(b) Feng, Z.; Lubell, W. D. J. Org. Chem. 2001, 66, 1181.
(c) Artale, E.; Banfi, G.; Belvisi, L.; Colombo, L.; Colombo,
M.; Manzoni, L.; Scolastico, C. Tetrahedron 2003, 59, 6241.
(7) (a) Hruby, V. J.; Li, G.; Haskell-Luevano, C.; Shenderovich,
M. Biopolymers 1997, 43, 219. (b) Wang, W.; Yang, J.;
Ying, J.; Xiong, C.; Zhang, J.; Cai, C.; Hruby, V. J. J. Org.
Chem. 2002, 67, 6353.
(8) (a) Gosselin, F.; Lubell, W. D. J. Org. Chem. 1998, 63,
7463. (b) Angiolini, M.; Araneo, S.; Belvisi, L.; Cesarotti,
E.; Checchia, A.; Crippa, L.; Manzoni, L.; Scolastico, C.
Eur. J. Org. Chem. 2000, 2571. (c) Gosselin, F.; Lubell, W.
D. J. Org. Chem. 2000, 65, 2163.
(9) (a) Haubner, R.; Schmitt, W.; Hölzemann, G.; Goodman, S.
L.; Jonczyk, A.; Kessler, H. J. Am. Chem. Soc. 1996, 118,
7881. (b) Belvisi, L.; Bernardi, A.; Checchia, A.; Manzoni,
L.; Potenza, D.; Scolastico, C.; Castorina, M.; Cupelli, A.;
Giannini, G.; Carminati, P.; Pisano, C. Org. Lett. 2001, 3,
1001. (c) Marinelli, L.; Lavecchia, A.; Gottschalk, K.-E.;
Novellino, E.; Kessler, H. J. Med. Chem. 2003, 46, 4393.
(10) (a) Haubner, R.; Finsinger, D.; Kessler, H. Angew. Chem.
Int. Ed. 1997, 36, 1374. (b) Gottschalk, K.-E.; Kessler, H.
Angew. Chem. Int. Ed. 2002, 41, 3767. (c) Hynes, R. O.
Nature Med. 2002, 8, 918.
(15) Dondoni, A.; Marra, A.; Scherrmann, M.-C.; Bertolasi, V.
Chem.–Eur. J. 2001, 7, 1371.
(16) Schmidt, U.; Lieberknecht, A.; Wild, J. Synthesis 1984, 53.
(17) Compound 11. [a]D = –8.7 (c 0.8, CHCl3). 1H NMR (400
MHz, CDCl3): d = 7.34–7.18 (m, 20 H, 4 × Ph), 7.08 (br s, 1
H, NH), 6.81–6.72 (m, 4 H, MeOPh), 6.21 (d, J = 8.2 Hz, 1
H, CH=), 5.09, 5.01 (2 × d, J = 12.3 Hz, 2 H, PhCH2OCO),
4.51, 4.46 (2 × d, J = 11.8 Hz, 2 H, PhCH2O), 4.45 (s, 2 H,
PhCH2O), 4.12 (dd, J5,6a = 7.2 Hz, J6a,6b = 9.4 Hz, 1 H, H-6a),
4.04 (dd, J3,4 = 3.0 Hz, J4,5 = 5.8 Hz, 1 H, H-4), 3.92 (dd,
J5,6b = 4.7 Hz, 1 H, H-6b), 3.89, 3.80 (2 × d, J = 13.6 Hz,
2 H, PhCH2N), 3.89 (dd, J2,3 = 4.8 Hz, 1 H, H-3), 3.78, 3.71
(2 × s, 6 H, 2 × Me), 3.56 (dd, 1 H, H-2), 3.44 (ddd, 1 H, H-
5). Compound 13. [a]D = –45.3 (c 0.4, CHCl3). 1H NMR
(400 MHz, CDCl3): d = 6.86-6.79 (m, 4 H, MeOPh), 5.50
(dd, J6,7 = J7,8 = 7.7 Hz, 1 H, H-7), 5.19 (dd, J5,6 = 7.3 Hz, 1
H, H-6), 4.94 (br d, J3,NH = 5.5 Hz, 1 H, NH), 4.75 (dd,
J8,9a = 3.9, J9a,9b = 10.0 Hz, 1 H, H-9a), 4.44 (dd, J3,4a = 6.9
Hz, J3,4b = 12.1 Hz, 1 H, H-3), 4.28 (ddd, J8,9b = 1.0 Hz, 1 H,
H-8), 3.87 (dd, 1 H, H-9b), 3.76 (s, 3 H, Me), 3.64 (dd,
J4a,5 = 5.3 Hz, J4b,5 = 10.1 Hz, 1 H,, H-5), 2.96 (ddd,
J4a,4b = 11.8 Hz, 1 H, H-4a), 2.10, 2.02 (2 × s, 6 H, 2 × Ac),
1.96 (ddd, 1 H, H-4b), 1.41 (s, 9 H, t-Bu). Compound epi-13.
[a]D = –34.9 (c 0.7, CHCl3). 1H NMR (400 MHz, CDCl3):
d = 6.85–6.78 (m, 4 H, MeOPh), 5.52 (dd, J6,7 = 7.8 Hz,
J7,8 = 7.6 Hz, 1 H, H-7), 5.12 (dd, J5,6 = 7.6 Hz, 1 H, H-6),
5.04 (br s, 1 H, NH), 4.69 (dd, J8,9a = 4.6 Hz, J9a,9b = 10.2 Hz,
1 H, H-9a), 4.28 (ddd, J8,9b = 1.6 Hz, 1 H, H-8), 4.05–3.97
(m, 2 H, H-3, H-5), 3.94 (dd, 1 H, H-9b), 3.75 (s, 3 H, Me),
2.48 (ddd, J3,4a = 7.6 Hz, J4a,4b = 13.6, J4a,5 = 9.5 Hz, 1 H, H-
4a), 2.34 (ddd, J3,4b = 2.2 Hz, J4b,5 = 6.8 Hz, 1 H, H-4b), 2.10,
1.99 (2 × s, 6 H, 2 Ac), 1.42 (s, 9 H, t-Bu). Compound 14
Methyl Ester. [a]D =
(11) Another class of conformationally constrained
polyhydroxylated dipeptides has been recently described,
see: Tremmel, P.; Brand, J.; Knapp, V.; Geyer, A. Eur. J.
Org. Chem. 2003, 878.
(12) Arap, W.; Pasqualini, R.; Ruoslahti, E. Science 1998, 279,
377.
(13) Compound 6 was prepared in gram scale quantities by
stereoselective addition of 2-lithiothiazole to the nitrone
derived from D-arabinose 5 followed by dehydroxylation of
the resulting open-chain hydroxylamine and cyclization by
intramolecular nitrogen-carbon bond formation via SN2
process. See: (a) Dondoni, A.; Perrone, D. Tetrahedron Lett.
1999, 40, 9375. (b) Dondoni, A.; Giovannini, P.; Perrone, D.
J. Org. Chem. 2002, 62, 7203.
–63.4 (c 0.3, CHCl3). 1H NMR (400 MHz, CDCl3): d = 5.61
(dd, J6,7 = 9.3 Hz, J7,8 = 8.2 Hz, 1 H, H-7), 5.10 (dd, J5,6 = 8.4
Hz, 1 H, H-6), 5.08 (br d, J3,NH = 7.0 Hz, 1 H, NH), 4.58 (d,
1 H, H-8), 4.53 (ddd, J3,4a = 6.5 Hz, J3,4b = 12.0 Hz, 1 H, H-
3), 3.78 (s, 3 H, Me), 3.69 (ddd, J4a,5 = 5.4 Hz, J4b,5 = 9.5 Hz,
1 H, H-5), 3.02 (ddd, J4a,4b = 12.5 Hz, 1 H, H-4a), 2.16 (ddd,
1 H, H-4b), 2.09, 2.06 (2 × s, 6 H, 2 × Ac), 1.43 (s, 9 H, t-
Bu). 13C NMR (100 MHz, CDCl3): d = 173.4 (Me3COCO),
173.3 (C-2), 170.4, 169.6 (CH3CO), 167.8 (CO2Me), 80.1
(14) Compound 7. [a]D = +22.2 (c 1.2, CHCl3). 1H NMR (300
MHz, CDCl3): d = 7.74 (d, J = 3.3 Hz, 1 H, Th), 7.32–7.14
(m, 16 H, 3 × Ph, Th), 4.68, 4.50 (2 × d, 2 H, J = 11.7 Hz,
PhCH2O), 4.58, 4.46 (2 × d, J = 11.7 Hz, 2 H, PhCH2O), 4.44
(d, J2,3 = 4.8 Hz, 1 H, H-2), 4.27 (dd, J3,4 = 4.5 Hz, 1 H, H-
3), 4.16 (dd, J4,5 = 6.6 Hz, 1 H, H-4), 4.01, 3.82 (2 × d, J =
Synlett 2003, No. 15, 2345–2348 © Thieme Stuttgart · New York