ALKALINE HYDROLYSIS OF 4-NITROPHTHALIMIDE
413
the micellar phase by strongly binding the reactant(s).
(b) The rate of a reaction is either insensitive to the
polarity change or increases with the decrease in the
polarity of the reaction medium. (c) Both reactants
have the same site of average location into the micellar
phase. (d) The magnitude of the second-order rate con-
stant for a fully or semi-ionic bimolecular reaction into
the micellar phase should be sufficiently large to cause
a rate-increasing effect due to the increase in the con-
centration of micellized ionic reactant(s) through the
usual ion-exchange process. (e) Micelles stabilize the
transition state more strongly than the reactant state in
a critical rate-determining step of the reaction. In the
BIBLIOGRAPHY
1. Reddy, P. Y.; Kondo, S.; Toru, T.; Ueno, Y. J Org Chem
1997, 62, 2652, (see also references therein).
2. Bunton, C. A. Catal Rev Sci—Eng 1979, 20, 1.
3. Bunton, C. A.; Savelli, G. Adv Phys Org Chem 1986,
22, 213.
4. Khan, M. N. Int J Chem Kinet 1987, 19, 143.
5. Khan, M. N. J Pharm Biomed Anal 1989, 17, 685.
6. Khan, M. N. Langmuir 1997, 13, 2498.
7. Khan, M. N.; Arifin, Z. Malaysian J Sci 1994, 15B, 41.
8. Unpublished observations.
9. Menger, F. M.; Portnoy, C. E. J Am Chem Soc1967,
89, 4698.
10. Romsted, L. S. In Surfactants in Solution; Mittal, K. L.
and Lindman, B., Eds.; Plenum: New York, 1984; Vol.
2, p 1015.
11. Khan, M. N. Colloids Surf A 1997, 127, 211.
12. Khan, M. N. J Chem Soc, Perkin Trans 2 1990, 435.
13. Khan, M. N. J Chem Soc, Perkin Trans 2 1988, 213.
14. Khan, M. N. J Org Chem 1996, 61, 8063.
15. Khan, M. N.; Ohayagha, J. E. J Phys Org Chem 1991,
4, 547.
16. Khan, M. N. Int J Chem Kinet 1991, 23, 567.
17. Khan, M. N.; Gambo, S. K. Int J Chem Kinet 1985, 17,
419.
18. Khan, M. N.; Ahmad, F. Colloids Surf A, in press.
19. Ritchie, C. D.; Wright, D. J.; Huang D.-S.; Kamego, A.
A. J Am Chem Soc1975, 97, 1163.
20. Frosts, A. A.; Pearson, R. G. Kinetics and Mechanism,
2nd ed.; Wiley: New York, 1961.
h
present reaction system, the rate constants k0,M and
h
k0,W should not be affected by the occurrence of
HOϪ/BrϪ
ion exchange because these rate constants
stand for pH-independent hydrolysis of NPTH. Al-
h
though we do not know the exact value of
its
,
kOH,M
value must be proportional to kOH,Wh, and the value of
h
1
1
MϪ sϪ .
Ϫ
KOH,W is 0.0463
Rate maxima in
kobs
profiles were obtained in the reactions of
with ionized N-hydroxyphthalimide [11] (where
[CTABr]T
HOϪ
h
1
1
kOH,W ϭ 0.56 MϪ sϪ )
[21] (where
and with phenyl benzoate
kOH,W ϭ 0.68 MϪ sϪ ),
maxima were not obtained in the reactions of
with neutral securinine [29] (where
h
1
1
whereas such
HOϪ
kOH,W ϭ 0.04
h
1
Ϫ1
MϪ s ).
It is thus apparent that the absence of a rate-
increasing effect of CTABr micelles in the present re-
action is due to rather low values of kOH,Wh and hence
21. Khan, M. N. Colloids Surf A 1998, 139, 63.
22. Khan, M. N.; Arifin, Z. J Colloid Interface Sci 1996,
180, 9.
23. Broxton, T. J.; Christie, J. R.; Chung, R. P.-T. J Org
Chem 1990, 53, 3081.
24. Lissi, E.; Abuin, E.; Cuccovia, I. M.; Chaimovich, H. J
Colloid Interface Sci 1986, 112, 513.
25. Menger, F. M.; Williams, D. Y.; Underwood, A. L.;
Anacker, E. W. J Colloid Interface Sci 1982, 90, 546.
26. Loughlin, J. A.; Romsted, L. S. Colloids Surf 1990, 48,
123.
h
kOH,M
.
Ionic micellar-mediated organic reactions are be-
lieved to occur either inside the Stern layer or at the
interface between the micellar surface and bulk water
solvent. The concentration of charged groups at the
ionic micellar surface, although very uncertain, is
nearly 3.5 M [35]. The increase in [NaCl] from 0 to
4
1
32 ϫ 10Ϫ sϪ
3.0 M increased kobs from
to
41 ϫ
4
10Ϫ
at 0.03 M NaOH (Table III). Thus, micellar in-
hibition of the hydrolysis of NPTH at both 0.01 and
0.05 M NaOH cannot be explained in terms of a mi-
cellar surface ionic strength effect.
27. Cuccovia, I. M.; da Silva, I. N.; Chaimovich, H.;
Romsted, L. S. Langmuir 1997, 13, 647.
28. Bachofer, S. J.; Simonis, U. Langmuir 1996, 12, 1744.
29. Lajis, N. H.; Kahn, M. N. J Phys Org Chem 1998, 11,
209.
30. Bunton, C. A. In Surfactants in Solution; Mittal, K. L.;
Shah, D. O., Eds.; Plenum: New York, 1991; Vol. 11,
p 17.
31. Germani, R.; Savelli, G.; Romeo, T.; Spreti, N.; Ceri-
chelli, G.; Bunton, C. A. Langmuir 1993, 9, 55.
32. Khan, M. N. J Org Chem 1997, 62, 3190.
33. Khan, M. N.; Arifin, Z.; Ismail, E.; Ali, S. F. M. J Org
Chem 2000, 65, 1331.
The polarity of the micellar surface has been shown
to be considerably smaller compared to that of aque-
ous pseudophase [36–40]. The increase in the con-
tents of CH3CN and CH3OH from 1 to 70% v/v de-
creased kobs by ϳ11-fold (Table II). It is therefore
tempting to propose that micellar inhibition of hy-
drolysis of NPTH at both 0.01 and 0.05 M NaOH is
merely due to the medium polarity effect. However,
micellar inhibition due to different sites of average lo-
cation of both the reactants (NPTHM and HOMϪ, as
well as NPTMϪ and HOMϪ) at the micellar surface can-
not be completely ruled out [41,42].
34. Khan, M. N.; Arifin, Z.; Ismail, E.; Ali, S. F. M. Col-
loids Surf A 2000, 161, 381.
35. Cordes, E. H. Pure Appl Chem 1978, 50, 617.