4914
W. Huang et al. / Tetrahedron Letters 47 (2006) 4911–4915
benzylamine (60.6 mg, 0.5 mmol, 1.0 equiv) in anhydrous
1,2-dichloroethane (1 mL) at room temperature and the
resulting mixture was shaken at 80 ꢁC. After 5 h, the
reaction was cooled to room temperature and then
quenched with 2 mL of 0.5 M ethylenediaminetetraacetic
acid disodium salt solution. The mixture was extracted with
EtOAc (2 · 5 mL). The combined organic layer was dried
over MgSO4, filtered, and concentrated under reduced
pressure. The crude reaction product was purified by
preparative thin-layer chromatography (10% ethyl acetate
in hexanes) to yield 2a (124.8 mg, 57%) as a viscous oil.
TLC (silica gel, 10% ethyl acetate in hexanes, Rf = 0.42); 1H
NMR (CDCl3, 400 MHz) d 2.09–2.15 (m, 1H), 2.21–2.29
(m, 1H), 2.33 (s, 3H), 2.38–2.43 (m, 1H), 3.04 (d,
J = 12.9 Hz, 1H), 3.08–3.13 (m, 1H), 3.16–3.22 (m, 1H),
3.69 (d, J = 8.2 Hz, 1H), 3.73 (d, J = 12.9 Hz 1H), 7.06–
7.14 (m, 6H), 7.26–7.28 (m, 2H), 7.36–7.38 (m, 2H), 7.46–
7.50 (m, 2H); 13C NMR (CDCl3, 75 MHz) d 21.1, 28.0,
52.3, 57.1, 61.1, 71.6, 115.5 (JC–F = 21.4 Hz), 126.0, 128.5,
128.9, 129.3, 129.4, 135.6, 135.7, 135.8, 136.5, 136.8
(JC–F = 3.1 Hz), 162.4 (JC–F = 245.7 Hz), 198.4.
The application of this methodology in the syntheses of
b-proline libraries will be reported in due course.
Acknowledgments
We thank Dr. Feng Li for the NOE analysis.
References and notes
1. (a) Alper, P. B.; Meyers, C.; Lerchner, A.; Siegel, D. R.;
Carreira, E. M. Angew. Chem., Int. Ed. 1999, 38, 3186; (b)
Fischer, C.; Meyers, C.; Carreira, E. M. Helv. Chim. Acta
2000, 83, 1175; (c) Han, Z.; Uehira, S.; Tsuritani, T.;
Shinokubo, H.; Oshima, K. Tetrahedron 2001, 57, 987–995;
(d) Lautens, M.; Han, W.; Liu, H.-C. J. Am. Chem. Soc.
2003, 125, 4028–4029; (e) Lautens, M.; Han, W. J. Am.
Chem. Soc. 2002, 124, 6312–6316; (f) Bertozzi, F.; Gustafs-
son, M.; Olsson, R. Org. Lett. 2002, 4, 3147–3150; (g) Li,
G.; Xu, X.; Chen, D.; Timmons, C.; Carducci, M. C.;
Headley, A. D. Org. Lett. 2003, 5, 329–331; (h) Timmons,
C.; Guo, L.; Liu, J.; Cannon, J. F.; Li, G. J. Org. Chem.
2005, 70, 7634–7639.
2. (a) Liebeskind, L. S.; Srogl, J. J. Am. Chem. Soc. 2000, 122,
11260–11261; (b) Fukuyama, T.; Lin, S. C.; Li, L. J. Am.
Chem. Soc. 1990, 112, 7050–7051; (c) Crich, D.; Hao, X.
J. Org. Chem. 1997, 62, 5982–5988; (d) Sugoh, K.;
Kuniyasu, H.; Ohtaka, A.; Takai, Y.; Tanaka, A.; Mach-
ino, C.; Kambe, N.; Kurosawa, H. J. Am. Chem. Soc. 2001,
123, 5108–5109; (e) Arrastia, I.; Lecea, B.; Cossio, F. P.
Tetrahedron Lett. 1996, 37, 245–248; (f) Danheiser, R. L.;
Choi, Y. M.; Menichincheri, M.; Stoner, E. J. J. Org. Chem.
1993, 58, 322–327; (g) Han, Y.; Chorev, M. J. Org. Chem.
1999, 64, 1972–1978.
5. Huang, W.; O’Donnell, M.-M.; Bi, G.; Liu, J.; Yu, L.;
Baldino, C. M.; Bell, A. S.; Underwood, T. J. Tetrahedron
Lett. 2004, 45, 8511.
6. Some recent examples for preparing 3-alkylidenyl-pyrrol-
idin-2-one derivatives: (a) Hutton, T. K.; Muir, K. W.;
Procter, D. J. Org. Lett. 2003, 4811; (b) Kitbunnadaj, R.;
Zuiderveld, O. P.; De Esch, I. J. P.; Vollinga, R. C.; Bakker,
R.; Lutz, M.; Spek, A. L.; Cavoy, E.; Deltent, M.-F.;
Menge, W. M. P. B.; Timmerman, H.; Leurs, R. J. Med.
Chem. 2003, 46, 5445; (c) Fielding, M. R.; Grigg, R.; Urch,
C. J. Chem. Commun. 2000, 2239.
7. The assignment of the stereochemistry was based upon an
NOE analysis of lactam 4d.
2.4% nOe
H
3. When MgI2 was used to promote the reaction, 2a and 3a
were formed as an inseparable mixture. These thioesters
were converted to the phenylketones under Liebeskind’s
condition.2a When a mixture of 2a and 3a was used, the
reaction gave phenylketones 5 and 6 as a pair of cis–trans
isomers (Eq. 1). The proton NMR spectra of the phenylk-
etones were compared with those of the authentic samples.
Under the same condition, thioester 2a gave phenylketone
5, the trans isomer (Eq. 2). Based on these observations, 2a
was tentatively assigned as trans configuration.
H
H
H
N
O
8. General procedure: To a 7 mL vial, benzaldehyde (53.1 mg,
0.5 mmol in 1.0 mL ClCH2CH2Cl, 1.0 equiv), Et2AlI
(1.5 mL, 25 wt % solution in toluene, 1.0 mmol, 3.0 equiv),
O
O
O
O
PhB(OH)2
Ph
Ph
+
(
p
-Cl)PhS
F
(p
-Cl)PhS
F
+
N
N
CuTc
Pd(PPh3)4
N
N
ð1Þ
ð2Þ
F
F
5
2a
3a
6
O
O
PhB(OH)2
(p
-Cl)PhS
F
Ph
N
N
CuTc
Pd(PPh3)4
F
2a
5
4. General procedure: To a 7 mL vial, 4-fluorobenzaldehyde
(62.1 mg, 0.5 mmol in 1.0 mL ClCH2CH2Cl, 1.0 equiv),
Et2AlI (1.0 mL, 25 wt % solution in toluene, 1.0 mmol,
2.0 equiv), and cyclopropanecarboxylic 4-chlorophenyl thio-
ester (1a) (106.2 mg, 0.5 mmol in 1.0 mL ClCH2CH2Cl,
1.0 equiv) were added sequentially to a solution of 4-methyl
and cyclopropanecarboxylic 4-chlorophenyl thioester (1a)
(106.2 mg, 0.5 mmol in 1.0 mL ClCH2CH2Cl, 1.0 equiv)
were added sequentially to a solution of butylamine
(36.5 mg, 0.5 mmol, 1.0 equiv) in anhydrous 1,2-dichloro-
ethane (1 mL) at room temperature and the resulting
mixture was shaken first at 80 ꢁC for 3 h, then at 90 ꢁC