1λ4,3λ4,5λ4-Trithia-2,4,6,8,9-pentaazabicyclo[3.3.1]nona-1(9),2,3,5,7-pentaenes
FULL PAPER
3
4
(s, NCN) ppm. 19F NMR: δ ϭ Ϫ114.9 (dd, JF,H ϭ 7.8, JF,H
ϭ
with a graphite monochromator. The crystals were mounted using
6.2 Hz, 2F) ppm. IR: ν˜ ϭ 2926 w, 1622 m, 1591 m, 1566 w, 1472 Kel-F oil onto a thin glass fibre. Details of the data collection and
m, 1344 s, 1238 m, 1148 m, 1011 s, 966 sh, 929 w, 818 w, 792 m, refinement are given in Table 1. The programs SHELX-97[27] and
776 m, 752 s, 630 m, 690 w, 670 m, 576 s, 523 w, 503 sh, 489 s, 467 DIAMOND[28] were used. The structures were solved by direct
m cmϪ1. MS-FI: m/z ϭ 291 (45) [Mϩ]. MS-HR: found 290.95194, methods (SHELXS).[27] Subsequent least-squares refinement
calcd. 290.95187.
(SHELXL 97Ϫ2)[27] located the positions of the remaining atoms
in the electron density maps. Non-hydrogen atoms were refined an-
isotropically. Hydrogen atoms were placed in calculated positions
using a riding model and refined isotropically in blocks.
Preparation of C6F5CN5S3 (1p): [C6F5C(NSiMe3)2Li]2·OEt2 (7.1 g,
18 mmol) in 50 mL of diethyl ether was added dropwise to trithia-
zyl trichloride (4.6 g, 19 mmol) in 50 mL of diethyl ether. The solu-
tion became dark red. The solvent and all volatile products were
removed and the remaining residue was dissolved in 100 mL of
acetonitrile and the solution was filtered. On storage at Ϫ40 °C,
yellow-brown crystals were obtained (2.4 g, 7 mmol, 39% yield),
CCDC-205700 (1b) -205701 (1f) -205702 (1n) -205703 (1r) -205704
(1o) and -205705 (1q) contain the supplementary crystallographic
data for this paper. These data can be obtained free of charge at
www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge
Crystallographic Data Centre, 12, Union Road, Cambridge
CB2 1EZ, UK; Fax: (internat.) ϩ44-1223/336-033; E-mail:
deposit@ccdc.cam.ac.uk].
m.p. 97 °C. 13C{1H} NMR: δ ϭ 115.0 (t, JC,F ϭ 17 Hz, ipso-
C6F5), 138.7 (dm, JC,F ϭ 253 Hz, o-C6F5), 143.2 (dm, JC,F
2
1
1
ϭ
1
253 Hz, p-C6F5), 145.2 (dm, JC,F ϭ 247 Hz, m-C6F5), 162.1 (s,
NCN) ppm. 19F NMR: δ ϭ Ϫ145.5 (dddd, JFF ϭ Ϫ21.8, JFF
ϭ
ϭ
ϭ
3
4
Quantum Chemical Calculations: All ab initio calculations were per-
formed with the GAUSSIANЈ98 program package.[29] The mapped
electrostatic potential (MEP) representations are made with
MOLEKEL.[21]
4
5
3
Ϫ4.7, JFF ϭ 3.2, JFF ϭ 8.0 Hz, 2F, o-F), Ϫ154.9 (tt, JFF
4
3
3
Ϫ20.2, JFF ϭ 3.2, 1F, p-F), Ϫ164.3 (dddd, JFF ϭ Ϫ21.8, JFF
4
5
Ϫ20.2, JFF ϭ Ϫ0.8, JFF ϭ 8.0 Hz, 2F, m-F) ppm. IR: ν˜ ϭ 1656
w, 1524 m,. 1504 s, 1427 sh, 1402 s, 1360 s, 1278 m, 1200 s, 1171
m, 1151 m, 1126 s, 1040 w, 1016 w, 986 m, 972 s, 901 m, 812 m,
761 sh, 722 s, 703 sh, 656 w, 626 w, 598 w, 570 w, 555 w, 531 m,
504 m, 473 m cmϪ1. MS-FI: m/z ϭ 345 (26) [Mϩ]. MS-HR: found
344.92149, calcd. 344.92361.
Acknowledgments
Financial Support by the FNK, Universität Bremen is gratefully
acknowledged.
Preparation of 4-NCC6H4CN5S3 (1q): A solution of lithium bis(tri-
methylsilyl)amide (3.9 g, 16 mmol) and terephthalonitrile (2.1 g,
16 mmol) in 150 mL of diethyl ether was added dropwise to trithia-
zyl trichloride (4.4 g) in 50 mL of diethyl ether at 0 °C. The solution
became brown. The solvent and all volatile products were removed
and the remaining residue was dissolved in 100 mL of dichloro-
methane and the solution was filtered. On storage at Ϫ40 °C, or-
ange crystals were obtained (1.4 g, 5 mmol, 31% yield), m.p. 158
[1]
R. Maggiulli, R. Mews, W.-D. Stohrer, M. Noltemeyer, G. M.
Sheldrick, Chem. Ber. 1988, 121, 1881Ϫ1889.
T. Chivers, J. F. Richardson, N. R. M. Smith, Inorg. Chem.
[2]
1986, 25, 272Ϫ275.
[3] [3a]
´
R. T. Boere, A. W. Cordes, R. T. Oakley, J. Chem. Soc.,
Chem. Commun. 1985, 929Ϫ930. [3b] R. T. Boere, A. W. Cordes,
´
R. T. Oakley, Acta Crystallogr., Sect. C 1985, 42, 1833Ϫ1834.
R. T. Boere, J. Fait, K. Larsen, J. Yip, Inorg. Chem. 1992, 31,
[4]
[5]
[6]
[7]
1
3
4
5
´
°C. H NMR: δ ϭ 7.75 (ddd, JH,H ϭ 8.3, JH,H ϭ 2.0, JH,H
ϭ
4
5
1.5 Hz, 2 H, C6H4), 8.33 (ddd,3JH,H ϭ 8.3, JH,H ϭ 2.0, JH,H
ϭ
1417Ϫ1423.
A. J. Banister, W. Clegg, I. B. Gorrell, Z. V. Hauptmann, R.
W. H. Small, J. Chem. Soc., Chem. Commun. 1987, 1611Ϫ1613.
S. J. Chen, Doctoral thesis, Universität Bremen, Germany,
1993.
1.5 Hz, 2 H, C6H4) ppm. 13C{1H} NMR: δ ϭ 116.9 (s, p-C6H4),
119.0 (s, NC), 128.9 (s, o-C6H4), 133.0 (s, m-C6H4), 141.2 (s, ipso-
C6H4), 165.4 (s, NCN) ppm. IR: ν˜ ϭ 2226 m, 1413 m, 1366 m,
1334 m, 1299 m, 1188 w, 1148 m, 1110 w, 1035 w, 1009 sh, 975 s,
921 w, 858 m, 836 w, 785 w, 768 sh, 750 m, 722 s, 692 m, 666 s,
642 sh, 561 m, 541 s, 506 m, 490 w, 467 m cmϪ1. MS-FI: m/z ϭ 280
(12) [Mϩ], 206 (NCC6H4CN2S2ϩ, 100). MS-HR: found 279.96632,
calcd. 279.96597.
R. Maggiulli, R. Mews, W.-D. Stohrer, M. Noltemeyer, Chem.
Ber. 1990, 123, 29Ϫ34.
[8] [8a]
´
R. T. Boere, A. W. Cordes, S. L. Craig, J. B. Graham, R.
T. Oakley, J. A. J. Privett, Chem. Commun. 1986, 807Ϫ808. [8b]
´
R. T. Boere, G. Ferguson, R. T. Oakley, Acta Crystallogr., Sect.
[8c]
´
R. T. Boere, A. W. Cordes, R. T.
C 1986, 42, 900Ϫ902.
Preparation of Cl3CCN5S3 (1r): Me3SiNSNSiMe3 (0.8 mL, 0.7 g,
3.5 mmol) in 10 mL of carbon tetrachloride was added dropwise to
Cl3CCN(NSCl)2 (0.85 g, 2.7 mmol) in 25 mL of carbon tetra-
chloride. After standing overnight, the solvent and all volatile prod-
ucts were removed and the remaining residue was dissolved in a
small amount of acetonitrile and the solution was filtered. On stor-
age at Ϫ40 °C and after drying under vacuum, yellow crystals of
1r·CH3CN (0.55 g, 1.9 mmol, 68% yield) were obtained, m.p. 102
°C. 13C NMR: δ ϭ 97.3 (s, CCl3), 168.4 (s, NCN) ppm. IR: ν˜ ϭ
1545 w, 1503 w, 1467 w, 1430 s, 1400 sh, 1362 m, 1292 s, 1265 sh,
1211 sh, 1202 m, 1171 w, 1151 m, 1127 w, 1028 m, 1004 sh, 987 m,
972 m, 946 sh, 916 sh, 872 sh, 862 m, 801 m, 758 m, 739 sh, 722 s,
Oakley, J. Am. Chem. Soc. 1987, 109, 7781Ϫ7785.
V. A. Bagryansky, N. P. Gritsan, Y. N. Molin, K. V. Shuvaev,
A. V. Zibarev, personal communication.
[9]
[10] [10a] J. M. Rawson, A. J. Banister, I. Lavender, Adv. Heterocyclic
[10b]
Chem. 1995, 62, 137Ϫ247.
J. M. Rawson, F. Palacio,
Struct. Bonding 2001, 100, 93Ϫ128.
[11]
´
R. T. Boere, R. T. Oakley, R. W. Reed, N. P. C. Westwood,
Centenary of the Discovery of Fluorine, International Sym-
posium, Paris, 1986, Abstr. I32.
[12]
[13]
[14]
[15]
[16]
R. Maggiulli, Diploma thesis, Universität Göttingen, Ger-
many 1986.
´
A. W. Cordes, R. T. Oakley, R. T. Boere, Acta Crstallogr., Sect.
C 1985, 41, 1833Ϫ1834.
702 w, 692 m, 660 m, 639 w, 567 m, 559 m, 506 s, 402 m cmϪ1
.
T. Chivers, F. Edelmann, J. F. Richardson, N. R. M. Smith, O.
Treu Jr., M. Trsic, Inorg. Chem. 1986, 25, 2119Ϫ2125.
MS-FI: m/z ϭ 295 (58) [Mϩ]. MS-HR: found 294.83877, calcd.
´
R. T. Boere, R. T. Oakley, R. W. Reed, J. Organomet. Chem.
294.83813.
1987, 331, 161Ϫ167.
C. Knapp, E. Lork, P. G. Watson, R. Mews, Inorg. Chem. 2002,
41, 2014Ϫ2025.
Crystallographic Analysis
[17] [17a]
The single-crystal X-ray structure determinations were performed
´
R. T. Boere, R. T. Oakley, M. Shevalier, J. Chem. Soc.,
[17b]
˚
on a Siemens P4 diffractometer using Mo-Kα (0.71073 A) radiation
Chem. Commun. 1987, 110Ϫ112.
K. T. Bestari, R. T.
Eur. J. Inorg. Chem. 2003, 3211Ϫ3220
2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 3219