pubs.acs.org/joc
been significant advancements in overcoming the above lim-
Zinc Chloride-Promoted Aryl Bromide-Alkyne
Cross-Coupling Reactions at Room Temperature
itations through two general strategies: the utilization of
novel, highly active Pd catalysts6 and developing methodo-
logies that are active in the absence of copper cocatalyst.7
However, while “copper-free Sonogashira” conditions pre-
vent CuI-mediated homocoupling,8 they can suffer from
lower rates compared to those for reactions promoted by
CuI.9 Alternative cocatalysts that do not display this side
reactivity are thus highly desirable. In this Note, we describe
conditions for aryl bromide-alkyne cross-coupling reac-
tions at room temperature, which utilize substoichiometric
amounts of inexpensive ZnCl2 in the presence of an active Pd
catalyst.10
Aaron D. Finke, Eric C. Elleby, Michael J. Boyd,
Haim Weissman, and Jeffrey S. Moore*
Department of Chemistry, University of Illinois
Urbana-Champaign, 600 South Mathews Avenue, Urbana,
Illinois 61801
Received September 17, 2009
The yields for the room temperature coupling of the
relatively unreactive 4-bromoanisole with phenylacetylene,
both in the absence and the presence of ZnCl2, for selected
Pd precatalyst systems are described in Table 1. Many of these
Pd catalysts have been reported previously for aryl bromide-
alkyne cross-couplings. Gratifyingly, most of these previously
(6) Selected recent reports on utilizing active ligands for Pd-catalyzed
cross-coupling of aryl halides with alkynes: (a) Bohm, V. P. W.; Herrmann,
W. A. Eur. J. Org. Chem. 2000, 3679–3681. (b) Hundertmark, T.; Littke, A.
F.; Buchwald, S. L.; Fu, G. C. Org. Lett. 2000, 2, 1729–1731. (c) McGuinness,
D. S.; Cavell, K. J. Organometallics 2000, 19, 741–748. (d) Netherton, M. R.;
Fu, G. C. Org. Lett. 2001, 3, 4295–4298. (e) Gelman, D.; Buchwald, S. L.
Angew. Chem., Int. Ed. 2003, 42, 5993–5996. (f) Kollhofer, A.; Pullmann, T.;
Plenio, H. Angew. Chem., Int. Ed. 2003, 42, 1056–1058. (g) Soheili, A.;
Albaneze-Walker, J.; Murry, J. A.; Dormer, P. G.; Hughes, D. L. Org. Lett.
2003, 5, 4191–4194. (h) Feuerstein, M.; Berthiol, F.; Doucet, H.; Santelli, M.
Org. Biomol. Chem. 2003, 1, 2235–2237. (i) Datta, A.; Ebert, K.; Plenio, H.
Organometallics 2003, 22, 4685–4691. (j) Hierso, J. C.; Fihri, A.; Amardeil,
R.; Meunier, P.; Doucet, H.; Santelli, M.; Ivanov, V. V. Org. Lett. 2004, 6,
3473–3476. (k) Adjabeng, G.; Brenstrum, T.; Frampton, C. S.; Robertson, A.
J.; Hillhouse, J.; McNulty, J.; Capretta, A. J. Org. Chem. 2004, 69, 5082–
5086. (l) Cheng, J.; Sun, Y.; Wang, F.; Guo, M.; Xu, J.; Pan, Y.; Zhang, Z.
J. Org. Chem. 2004, 69, 5428–5432. (m) Anderson, K. W.; Buchwald, S. L.
Angew. Chem., Int. Ed. 2005, 44, 6173–6177. (n) Kollhofer, A.; Plenio, H.
Adv. Synth. Catal. 2005, 347, 1295–1300. (o) Shirakawa, E.; Kitabata, T.;
Otsuka, H.; Tsuchimoto, T. Tetrahedron 2005, 61, 9878–9885. (p) Bren-
strum, T.; Clattenburg, J.; Britten, J.; Zavorine, S.; Dyck, J.; Robertson, A.
J.; McNulty, J.; Capretta, A. Org. Lett. 2006, 8, 103–105. (q) Dhudshia, B.;
Thadani, A. N. Chem. Commun. 2006, 668–670. (r) Yi, C. Y.; Hua, R. M.
J. Org. Chem. 2006, 71, 2535–2537. (s) Consorti, C. S.; Flores, F. R.;
Rominger, F.; Dupont, J. Adv. Synth. Catal. 2006, 348, 133–141. (t) Ruiz,
Substoichiometric amounts of ZnCl2 promote the room
temperature, Pd/P(t-Bu)3-catalyzed cross-coupling of
aryl bromides with alkynes. Pd(I) dimer 1 is demonstrated
to be a particularly active precatalyst for this reaction.
The reaction is general for a wide variety of aryl bromides.
The Pd- and CuI-catalyzed cross-coupling reaction of aryl
and vinyl halides with terminal alkynes, known as the
Sonogashira or Hagihara-Sonogashira reaction,1-3 is one
of the most widely used and reliable methods of alkyne
functionalization. Nonetheless, Cu-mediated homodimeri-
zation of alkynes and the requirement of elevated tempera-
tures for the coupling of aryl bromides present a challenge to
the efficient preparation of acetylene-containing molecular
scaffolds free of chemical defects.4,5 Recently, there have
ꢀ
ꢀ
J.; Cutillas, N.; Lopez, F.; Lopez, G.; Bautista, D. Organometallics 2006, 25,
5768–5773. (u) Flackenstein, C. A.; Plenio, H. Chem.;Eur. J. 2007, 13,
2701–2716. (v) Kondolff, I.; Feuerstein, M.; Doucet, H.; Santelli, M. Tetra-
hedron 2007, 63, 9514–9521. (w) an der Heiden, M. R.; Plenio, H.; Immel, S.;
Burello, E.; Rothenberg, G.; Hoefsloot, H. C. J. Chem.;Eur. J. 2008, 14,
2857–2866. (x) Lipshutz, B. H.; Chung, D. W.; Rich, B. Org. Lett. 2008, 10,
3793–3796. (y) Brown, W. S.; Boykin, D. D.; Sonnier, M. Q. Jr.; Clark, W.
D.; Brown, F. V.; Shaughnessy, K. H. Synthesis 2008, 1965–1970. (z) Lee, D.;
Qiu, H.; Cho, M.; Lee, I.; Jin, M. Synlett 2008, 1657–1660.
(1) Marsden, J. A.; Haley, M. M. In Metal-Catalyzed Cross-Coupling
Reactions, 2nd ed.; de Meijre, A., Diederich, F., Eds.; Wiley-VCH:
Weinheim, Germany, 2004; pp 317-394.
(2) Negishi, E.; Anastasia, L. Chem. Rev. 2003, 103, 1979–2017.
(3) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975,
4467–4470.
(7) (a) For a review of recent advances in aryl halide-alkyne cross-
coupling, see: Doucet, H.; Hierso, J. C. Angew. Chem., Int. Ed. 2007, 46,
834–871. (b) For a critical review on alternative metal-catalyzed cross-
couplings of aryl halides and alkynes, see: Plenio, H. Angew. Chem., Int.
Ed. 2008, 47, 6954–6956.
(8) Alkynes in the presence of CuI, amine, and a stoichiometric oxidant
(Pd(II) or air) rapidly and quantitatively homocouple. This is the generally
accepted mechanism for reduction of some Pd(II) precatalysts in the Sono-
gashira reaction. See: Nguyen, P.; Yuan, Z.; Agocs, L.; Lesley, G.; Marder,
T. B. Inorg. Chim. Acta 1994, 220, 289-296 and references cited therein.
(9) In our experience, this observation holds true for couplings that utilize
amines as base. However, Buchwald et al. have reported that for certain
coupling conditions which utilize inorganic bases, CuI inhibits reactivity (see
ref 6e.).
(4) Selected reviews on the synthesis and applications of acetylene scaf-
folds: (a) Poly(arylene ethynylene)s: From Synthesis to Application; Weder,
C., Ed.; Springer: Berlin/Heidelberg, Germany, 2005; Vol. 177. (b) Bunz, U. H. F.
Chem. Rev. 2000, 100, 1605–1644. (c) McQuade, D. T.; Pullen, A. E.; Swager,
T. M. Chem. Rev. 2000, 100, 2537–2574. (d) Thomas, S. W.; Joly, G. D.; Swager,
T. M. Chem. Rev. 2007, 107, 1339–1386. (e) Hill, D. J.; Mio, M. J.; Prince, R. B.;
Hughes, T. S.; Moore, J. S. Chem. Rev. 2001, 101, 3893–4011. (f) Moore, J. S.
Acc. Chem. Res. 1997, 30, 402–413. (g) Martin, R. E.; Diederich, F. Angew.
Chem., Int. Ed. 1999, 38, 1350–1377.
(5) Previous work from our group on applications of arylene ethynylene
scaffolds: (a) Hartley, C. S.; Elliott, E. L.; Moore, J. S. J. Am. Chem. Soc.
2007, 129, 4512. (b) Smaldone, R. A.; Moore, J. S. Chem.;Eur. J. 2008, 14,
2650–2657. (c) Zang, L.; Che, Y.; Moore, J. S. Acc. Chem. Res. 2008, 41,
1596–1608. (d) Zhang, W.; Moore, J. S. Angew. Chem., Int. Ed. 2006, 45,
4416–4439.
(10) This is an optimization of a method we previously reported: Elliott,
E. L.; Ray, C. R.; Kraft, S.; Atkins, J. R.; Moore, J. S. J. Org. Chem. 2006, 71,
5282–5290.
DOI: 10.1021/jo902015w
r
Published on Web 10/27/2009
J. Org. Chem. 2009, 74, 8897–8900 8897
2009 American Chemical Society