A R T I C L E S
Stokes et al.
spherically important gas-phase species such as formaldehyde
and carbon dioxide have been detected as product species.
Furthermore, the heterogeneous ozonolysis of CdC double
bonds has been reported to follow a Langmuir-Hinshelwood
mechanism.8,37 Finally, depending on the ozone partial pressure,
more or fewer polar surface-bound product species have been
reported to form, which results in the formation of more or fewer
hydrophobic ozone-processed surfaces.38
Given the atmospheric importance of heterogeneous organic
oxidation processes, and given the ubiquity of chirality in nature,
we determined the ozonolysis rates of two olefin diastereomers,
each containing terminal CdC double bonds which are steered
toward and away from the gas phase by the use of a quinuclidine
group covalently bound to a fused silica surface (Figure 1A).
A mere displacement of the CdC double bond from a terminal
position toward an embedded position within the alkyl chain
would not achieve the same effect as the one made possible by
using the quinuclidine ring because terminal CdC double bonds
are vastly more reactive than nonterminal double bonds.7
Experimental Approach
The surfaces are prepared by covalently linking (2S,4S,5R)-5-
vinyl-2-quinuclidinecarboxaldehyde(CAS#66140-82-7)and(2R,4S,5R)-
(15) Lai, C. C.; Yang, S. H.; Finlayson-Pitts, B. J. Langmuir 1994, 10,
4637–4644.
(16) Wadia, Y.; Tobias, D. J.; Stafford, R.; Finlayson-Pitts, B. J. Langmuir
2000, 16, 9321–9330.
(17) Dubowski, Y.; Vieceli, J.; Tobias, D. J.; Gomez, A.; Lin, A.;
Nizkorodov, S. A.; McIntire, T. M.; Finlayson-Pitts, B. J. J. Phys.
Chem. A 2004, 108, 10473–10485.
(18) Usher, C. R.; Michel, A. E.; Grassian, V. H. Chem. ReV. 2003, 103,
4883–4940.
(19) Moise, T.; Rudich, Y. J. Geophys. Res.-Atmos. 2000, 105, 14667–
14676.
(20) Thomas, E. R.; Frost, G. J.; Rudich, Y. J. Geophys. Res.-Atmos. 2001,
106, 3045–3056.
(21) Poschl, U.; Letzel, T.; Schauer, C.; Niessner, R. J. Phys. Chem. A
2001, 105, 4029–4041.
(22) Mmereki, B. T.; Donaldson, D. J. J. Phys. Chem. A 2003, 107, 11038–
11042.
(23) Katrib, Y.; Martin, S. T.; Hung, H. M.; Rudich, Y.; Zhang, H. Z.;
Slowik, J. G.; Davidovits, P.; Jayne, J. T.; Worsnop, D. R. J. Phys.
Chem. A 2004, 108, 6686–6695.
(24) Smith, G. D.; Woods, E.; DeForest, C. L.; Baer, T.; Miller, R. E. J.
Phys. Chem. A 2002, 106, 8085–8095.
(25) Thornberry, T.; Abbatt, J. P. D. Phys. Chem. Chem. Phys. 2004, 6,
84–93.
(26) Hearn, J. D.; Lovett, A. J.; Smith, G. D. Phys. Chem. Chem. Phys.
2005, 7, 501–511.
Figure 1. (A) Coupling of (2S,4S,5R)-5-vinyl-2-quinuclidine carboxalde-
hyde and (2R,4S,5R)-5-vinyl-2-quinuclidine carboxaldehyde to aniline
silane-functionalized fused silica substrates. (B) N(1s) XPS spectra of fused
silica substrates functionalized with the 2S- and the 2R-diastereomers (top
and bottom, respectively). Gray areas and thin lines indicate the N(1s) XPS
response of the unreacted aniline, the amide, and the quinuclidine groups.
See text for details.
(27) Morris, J. W.; Davidovits, P.; Jayne, J. T.; Jimenez, J. L.; Shi, Q.;
Kolb, C. E.; Worsnop, D. R.; Barney, W. S.; Cass, G. Geophys. Res.
Lett. 2002, 29.
5-vinyl-2-quinuclidine carboxaldehyde (CAS# 66140-84-9) to
aniline-functionalized fused silica substrates (see Supporting In-
formation). After rinsing and sonication in absolute ethanol and
then methylene chloride (Mallinckrodt) for 5 min, the substrates
are dried under nitrogen. They were then studied using N(1s) XPS
measurements (please see Supporting Information) to determine the
relative surface coverages for the 2R- and 2S-diastereomers, which
are found to be 51 ( 5% and 36 ( 5%, respectively (Figure 1B).
Using a previously described39,40 laser system suitable for
carrying out broadband vibrational sum frequency generation (SFG)
studies, we identified the surface-bound diastereomers (Figure 2A,B)
in the CH stretching region. The olefinic CH stretches of the
terminal CdC double bond are clearly observable above 3000 cm-1
in both diastereomers when we interrogate the surface with a
polarization combination that probes vibrational transitions oriented
(28) Jang, M. S.; Carroll, B.; Chandramouli, B.; Kamens, R. M. EnViron.
Sci. Technol. 2003, 37, 3828–3837.
(29) McIntire, T. M.; Lea, S. A.; Gaspar, D. J.; Jaitly, N.; Dubowski, Y.;
Li, Q.; Finlayson-Pitts, B. J. Phys. Chem. Chem. Phys. 2006, 7, 3605–
3609.
(30) Clifford, D.; Donaldson, D. J.; Brigante, M.; D’Anna, B.; George, C.
EnViron. Sci. Technol. 2008, 42, 1138–1143.
(31) Kwamena, N.-O. A.; Staikova, M. G.; Donaldson, D. J.; George, I. J.;
Abbatt, J. P. D. J. Phys. Chem. A 2007, 111, 11050–11058.
(32) Donaldson, D. J.; Vaida, V. Chem. ReV. 2006, 106, 1445–1461.
(33) Park, J.; Gomez, A. L.; Walser, M. L.; Lin, A.; Nizkorodov, S. A.
Phys. Chem. Chem. Phys. 2006, 8, 2506–2512.
(34) Hung, H.-M.; Katrib, Y.; Martin, S. T. J. Phys. Chem. A 2005, 109,
4517–4530.
(35) Presto, A. A.; Donahue, N. M. EnViron. Sci. Technol. 2006, 40, 3536–
3543.
(36) Gross, S.; Bertram, A. K. J. Phys. Chem. A 2008, 112, 3104–3113.
(37) McCabe, D. C.; Gierczak, T.; Talukdar, R. K.; Ravishankara, A. R.
Geophys. Res. Lett. 2001, 28, 3135–3138.
(39) Stokes, G. Y.; Buchbinder, A. M.; Gibbs-Davis, J. M.; Scheidt, K. A.;
Geiger, F. M. J. Phys. Chem. A 2008, 112, 11688–11698.
(40) Stokes, G. Y.; Buchbinder, A. M.; Gibbs-Davis, J. M.; Scheidt, K. A.;
Geiger, F. M. Vib. Spectrosc. 2009, 50, 86–98.
(38) Stokes, G. Y.; Chen, E. H.; Walter, S.; Geiger, F. M. J. Phys. Chem.
A 2009, 113, 8985-8993.
9
13734 J. AM. CHEM. SOC. VOL. 131, NO. 38, 2009