3
improved the rate of the second electron transfer in the alkene
Table 3. Reductive Deuteration of 1,4-Diene and Alkyne
a
reduction process and provided an attractive alternative to the
traditional homogenous Na/NH3 system. Compared with other
known reductive deuterations mediated by low-valent transition
metal compounds, such as SmI2, and alkali metal deuterides, this
new method is lower costing, safer, and with higher atom
economy. The potential application of this protocol in the
reductive deuteration of alkynes, polyenes and halides has also
been demonstrated and will be further investigated.
Mediated by Na/EtOD-d1
entry
substrate
product
yield (%)
62
1
2
95
Acknowledgments
aConditions: 1 (0.50 mmol, 1.0 equiv), ROD-d1 (3.0 or 6.0 equiv.), Na
dispersions in oil (3.0 or 6.0 equiv), Et2O (2.5 mL), rt, 10 min; isolated yield;
D incorporation determined by 1H NMR.
We thank NSFC (Nos. 21602248, 31272075 and 51302310)
and Chinese Universities Scientific Fund for financial support.
A possible mechanism for this transformation is presented in
Scheme 1. The dimerized product, formed via 5, was not detected
in any of the reactions mediated by sodium dispersions. However,
using sodium lump instead of sodium dispersion led to the
formation of 5 as the by-product (Table 1, entry 13), which
indicated that the specific surface area of sodium metal was
crucial to this reaction and the second electron transfer 3→4 was
possibly the rate determine step of this reaction. A primary
kinetic isotope effect kH/kD of 1.0 was determined for 1o. And
kH/kD of 1.3 (C1) and 1.0 (C2) was detected for 1a. The results
reveal that, for both activated alkenes, the deuterium transfer is
not involved in the rate limiting step3a. If EtOD-d1 was used to
quench the reaction 10 min after the addition of sodium,
complicated mixtures was formed (eq. 1), which indicated that
the second electron transfer is difficult to occur without a proton
donor. The products obtained from the sequential addition of
EtOD-d1 and EtOH (and verse vice) (Eq. 2 and 3) indicated that 1
→3 might be a proton coupled electron transfer process16 and
anion at C1 position is protonated at a later stage.
Supplementary Material
Experimental procedures and compound characterization data (PDF).
References and notes
1. a) Mutlib, A. E. Chem. Res. Toxicol. 2008, 21, 1672-1689; b) Nag, S.;
Lehmann, L.; Kettschau, G.; Toth, M.; Heinrich, T.; Thiele, A.; Varrone, A.;
Halldin, C. Bioorganic Med. Chem. 2013, 21, 6634-6641. c) Wong, K. Y.;
Xu, Y.; Xu, L. Biochim. Biophys. Acta - Proteins Proteomics 2015, 1854
(11), 1782–1794.
2. Atzrodt, J.; Derdau, V. Compd. Radiopharm. 2010, 53, 674-685.
3. a) Simmons, E. M.; Hartwig, J. F. Angew. Chem. Int. Ed. 2012, 51, 3066-
3072. b) Giagou, T.; Meyer, M. P. Chem. Eur. J. 2010, 16, 10616- 10628.
4. a) Katsnelson, A. Nat. Med. 2013, 19, 656. b) Zhang, Y.; Tortorella, M. D.;
Wang, Y.; Liu, J.; Tu, Z.; Liu, X.; Bai, Y.; Wen, D.; Lu, X.; Lu, Y.; Talley, J.
ACS Med. Chem. Lett. 2014, 5, 1162-1166. c) Zhu, Y.; Zhou, J.; Jiao, B. ACS
Med. Chem. Lett. 2013, 4, 349-352. d) Mullard, A. Nat. Rev. Drug Discov.
2016, 15, 219-221. e) Gant, T. G. J. Med. Chem. 2014, 57, 3595–3611.
5. a) Belleau, B.; Burba, J.; Pindell, M.; Reiffenstein, J. Science 1961, 133,
102-104. b) Sanderson, K. Nature 2009, 458, 269. c) Meanwell, N. A. J. Med.
Chem. 2011, 54, 2529-2591. d) Harbeson, S. L.; Tung, R. D. Annu. Rep. Med.
Chem.2011, 46, 403-417.
6. Kurihara, N. J. Mass Spectrom. Soc. Jpn. 1998, 46, 157-172.
7. For a review, see: a) Atzrodt, J.; Derdau, V.; Fey, T.; Zimmermann, J.
Angew. Chem., Int. Ed. 2007, 46, 7744-7765. For selected samples, see: b)
Ma, S.; Villa, G.; Thuy-Boun, P. S.; Homs, A.; Yu, J. Q. Angew. Chem., Int.
Ed. 2014, 53, 734-737. c) Bew, S. P.; Hiatt-Gipson, G. D.; Lovell, J. A.;
Poullain, C. Org. Lett. 2012, 14, 456-459. d)Neubert, L.; Michalik, D.;
Bähn, S.; Imm, S.; Neumann, H.; Atzrodt, J.; Derdau, V.; Holla, W.; Beller,
M. J. Am. Chem. Soc. 2012, 134, 12239-12244. e) Pony Yu, R.; Hesk, D.;
Rivera, N.; Pelczer, I.; Chirik, P. J. Nature 2016, 529, 195–199.
8. For selected examples, see: Donald, C. S.; Moss, T. A.; Noonan, G. M.;
Roberts, B.; Durham, E. C. Tetrahedron Lett. 2014, 55, 3305–3307. a) Byun,
H. S.; Bittman, R. Chem. Phys. Lipids 2010, 163, 809-813. b) Upshur, M. A.;
Chase, H. M.; Strick, B. F.; Ebben, C. J.; Fu, L.; Wang, H.; Thomson, R. J.;
Geiger, F. M. J. Phys. Chem. A 2016, 120, 2684-2690.
Scheme 1 Proposed Mechanism of the Reductive Deuteration
of Alkenes.
9. a) Szostak, M.; Spain, M.; Procter, D. J. Org. Lett. 2014, 16, 5052-5055. b)
Concellón, J. M.; Rodríguez-Solla, H. Chem. Eur. J.2001, 7, 4266–4271. c)
Concellón, J. M.; Rodríguez-Solla, H. Chem. Eur. J.2002, 8, 4493–4497. d)
Bom, A.; Bradley, M.; Cameron, K.; Clark, J. K.; Egmond, J. Van; Feilden,
H.; Maclean, E. J.; Muir, A. W.; Palin, R.; Rees, D. C.; Zhang, M. Angew.
Chem. Int. Ed. 2002, 41, 265–271.
10. Han, M.; Ma, X.; Yao, S.; Ding, Y.; Yan, Z.; Adijiang, A.; Wu, Y.; Li,
H.; Zhang, Y.; Lei, P.; Ling, Y.; An, J. J. Org. Chem. 2017, 82, 1285–1290.
For a sodium dispersion mediated ester reduction, see: An, J.; Work, D. N.;
Kenyon, C.; Procter, D. J. J. Org. Chem. 2014, 79, 6743-6747.
11. For a review, see: a) Keinan, E.; Greenspoon, N. partial reduction of
enones, styrenes, and related systems. In Comprehensive Organic Synthesis;
Trost, B. M., Fleming, I., Eds.; Elsevier Science Ltd, 1991; pp 524-569. For
selected examples, see: b) Selvam, P.; Sonavane, S. U.; Mohapatra, S. K.;
Jayaram, R. V. Tetrahedron Lett. 2004, 45, 3071–3075.Wang, J.; Song, G.;
Peng, Y.; Zhu, Y. Tetrahedron Lett. 2008, 49, 6518–6520. c) Tran, A. T.;
Huynh, V. A.; Friz, E. M.; Whitney, S. K.; Cordes, D. B. Tetrahedron Lett.
2009, 50, 1817–1819. d) de Noronha, R. G.; Romão, C. C.; Fernandes, A. C.
Tetrahedron Lett. 2010, 51, 1048–1051. e) Ma, D.-D.; Gu, P.; Li, R.
In summary, α,β-dideuterio compounds can be synthesized
from activated alkenes by sodium dispersion in oil and ethanol-d1.
High levels of deuterium incorporation and excellent yields have
been achieved across a broad range of activated alkenes. Sodium
dispersions with high specific surface area have effectively