The Journal of Organic Chemistry
Article
(ESI) m/z calcd for C8H10N2Na+ 157.07417 [M + Na]+, found
157.0742.
Higher Education for allowing a Ph.D. fellowship. We also
thank the PCMI program (INSU-CNRS) and the CNES
(Centre National d’Etudes Spatiales) for their financial support.
Reactivity of MeC5N with Dimethylamine in THF (Compound
12). To a solution of methylcyanobutadiyne 6 (35 mg, 0.39 mmol) in
THF (1 mL) was added a solution of dimethylamine in THF (0.20
mL, 2 M, 0.40 mmol). The reaction mixture was stirred at rt for 2 h.
The solution was then concentrated in vacuo. Purification by flash
chromatography (alumina, n-pentane/acetone 95/5) afforded com-
pound 12 as a yellow-orange solid in 82% yield (43 mg, 0.32 mmol).
Reactivity of MeC5N with Morpholine in Methanol (Compounds
14 and 15). To a solution of methylcyanobutadiyne 6 (44 mg, 0.49
mmol) in methanol (1.5 mL) was added a solution of morpholine in
methanol (1.0 mL, 0.5 M, 0.50 mmol). The reaction mixture was
stirred at rt for 2 h. The solution was then concentrated in vacuo.
Purification by flash chromatography (alumina, n-pentane/acetone
from 95/5 to 85/15) afforded compound 14 as a yellow solid in 21%
yield (18 mg, 0.10 mmol) and compound 15 as a white solid in 41%
yield (35 mg, 0.20 mmol). Characterization of compound 14: 1H
NMR (400 MHz, CDCl3) δ = 4.33 (s, 1H), 3.72 (t, 3J(H,H) = 5.0 Hz,
4H; OCH2), 3.20 (t, 3J(H,H) = 5.0 Hz, 4H; NCH2), 2.15 (s, 3H; Me);
13C NMR (100 MHz, CDCl3) δ = 164.3, 107.7, 88.7, 72.0, 66.2, 65.6,
DEDICATION
■
Dedicated to the memory of Professor James P. Ferris
(Rensselaer Polytechnic Institute).
REFERENCES
■
(1) (a) Charnley, S.; Ehrenfreund, P.; Kuan, Y.-J. Phys. World 2003,
16, 35−38. (b) Huebner, W. F. Earth, Moon, Planets 2000, 89, 179−
UrbanaChampaign.
(2) Carruthers, G. R. Astrophys. J. 1970, 161, L81−L85.
(3) Cami, J.; Bernard-Salas, J.; Peeters, E.; Malek, S. E. Science 2010,
329, 1180−1182.
(4) (a) HC3N: Turner, B. E. Astrophys. J. 1971, 163, L35−L59. (b)
HC5N: Avery, L. W.; Broten, N. W.; MacLeod, J. M.; Oka, T.; Kroto,
H. W. Astrophys. J. 1976, 205, L173−L175. (c) HC7N: Kroto, H. W.;
Kirby, C.; Walton, D. R. M.; Avery, L. W.; Broten, N. W.; MacLeod, J.
M.; Oka, T. Astrophys. J. 1978, 219, L133−L137. (d) HC9N: Broten,
N. W.; Oka, T.; Avery, L. W.; MacLeod, J. M.; Kroto, H. W. Astrophys.
J. 1978, 223, L105−L107. (e) HC11N: Bell, M. B.; Feldman, P. A.;
Travers, M. J.; McCarthy, M. C.; Gottlieb, C. A.; Thaddeus, P.
Astrophys. J. 1997, 483, L61−L64.
46.7, 18.2; HRMS (ESI) m/z calcd for C10H14N2O2Na+ 217.0953 [M
+ H2O + Na]+, found 217.0957. Characterization of compound 15: 1H
NMR (400 MHz, CDCl3) δ = 4.25 (s, 1H), 3.72 (t, 3J(H,H) = 5.0 Hz,
4H; OCH2), 3.29 (t, 3J(H,H) = 5.0 Hz, 4H; NCH2), 2.11 (s, 3H; Me);
13C NMR (100 MHz, CDCl3) δ = 147.1, 120.6, 97.4, 72.0, 70.9, 65.9,
47.2, 4.4; HRMS (ESI) m/z calcd for C10H12N2ONa+ 199.08473 [M +
Na]+, found 199.0849. Crystal data: C10H12N2O, M = 176.22 g mol−1,
T = 150 K, orthorhombic, space group P212121, a = 4.3708(2) Å, b =
13.7544(5) Å, c = 15.5815(5) Å, α = 90.0°, β = 90.0°, γ = 90.0°, V =
936.72 (6) Å3, Z = 4, Dc = 1.250 g cm−3, absorption coefficient = 0.083
mm−1, F(000) = 376, reflections collected = 6662, independent
reflections = 2050 (Rint = 0.0322), data/restraints/parameters = 1676/
0/127. Final R indices (I > 2σ): R1 = 0.0396. R indices (all data): wR2
= 0.0920, goodness-of-fit on F2 of 1.047.
Reactivity of MeC5N with Morpholine in THF (Compound 14). To
a solution of methylcyanobutadiyne 6 (45 mg, 0.51 mmol) in THF (2
mL) was added a solution of morpholine in THF (1.05 mL, 0.5 M,
0.525 mmol). The reaction mixture was stirred at rt for 2 h. The
solution was then concentrated in vacuo. Purification by flash
chromatography (alumina, n-pentane/acetone from 95/5 to 85/15)
afforded compound 14 as an orange solid in 93% yield (83 mg, 0.47
mmol).
(5) (a) MeC3N: Broten, N. W.; MacLeod, J. M.; Avery, L. W.; Irvine,
W. M.; Hoglund, B.; Friberg, P.; Hjalmarson, Å. Astrophys. J. 1984,
̈
276, L25−L29. (b) MeC5N: Snyder, L. E.; Hollis, J. M.; Jewell, P. R.;
Lovas, F. J.; Remijan, A. Astrophys. J. 2006, 647, L412−L417.
(6) (a) Synthesis of HC3N: Moureu, C.; Bongrand, J.-C. C. R. Hebd.
́
Seances Acad. Sci. 1910, 151, 946−948. (b) Synthesis of HC5N:
Trolez, Y.; Guillemin, J.-C. Angew. Chem., Int. Ed. 2005, 44, 7224−
7226. (c) Synthesis of MeC3N: Sheridan, J.; Thomas, L. F. Nature
1954, 174, 798. (d) Synthesis of MeC5N: Kerisit, N.; Toupet, L.;
Trolez, Y.; Guillemin, J.-C. Chem. - Eur. J. 2013, 19, 17683−17686.
(e) Bieri, G.; Kloster-Jensen, E.; Kvisle, S.; Maier, J. P.; Marthaler, O. J.
Chem. Soc., Faraday Trans. 2 1980, 76, 676−684. (f) Alexander, A. J.;
Kroto, H. W.; Maier, M.; Walton, D. R. M. J. Mol. Spectrosc. 1978, 70,
84−94.
(7) Miller, F. A.; Lemmon, D. H. Spectrochim. Acta 1967, 23A, 1415−
1423.
(8) Sanchez, R. A.; Ferris, J. P.; Orgel, L. E. Science 1966, 154, 784−
785.
(9) Ferris, J. P.; Sanchez, R. A.; Orgel, L. E. J. Mol. Biol. 1968, 33,
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
693−704.
(10) (a) Sanchez, R. A.; Orgel, L. E. J. Mol. Biol. 1970, 47, 531−543.
(b) Patel, B. H.; Percivalle, C.; Ritson, D. J.; Duffy, C. D.; Sutherland,
J. D. Nat. Chem. 2015, 7, 301−307.
(11) (a) Ingar, A.-A.; Luke, R. W. A.; Hayter, B. R.; Sutherland, J. D.
ChemBioChem 2003, 4, 504−507. (b) Smith, J.; Borsenberger, V.;
Raftery, J.; Sutherland, J. D. Chem. Biodiversity 2004, 1, 1418−1451.
(c) Powner, M. W.; Gerland, B.; Sutherland, J. D. Nature 2009, 459,
239−242.
1H and 13C NMR data for compounds 5, 6, and 12−15
and thermal ellipsoid plots for the X-ray diffraction
structures of compounds 12 and 15 (PDF)
(12) (a) Ferris, J. P. Science 1968, 161, 53−54. (b) Ferris, J. P.;
Goldstein, G.; Beaulieu, D. J. J. Am. Chem. Soc. 1970, 92, 6598−6603.
(13) Robertson, M. P.; Miller, S. L. Nature 1995, 375, 772−774.
(14) Verkruijsse, H. D.; Brandsma, L. Synth. Commun. 1991, 21,
141−144.
AUTHOR INFORMATION
Corresponding Authors
Tel: (+33)2-23-23-80-69.
■
(15) Robertson, J.; Naud, S. Org. Lett. 2008, 10, 5445−5448.
(16) Authors of ref 15 have reported the deprotection of compound
3 in 84% yield, using K2CO3 in MeOH.
Notes
́
(17) (a) Moureu, C.; Bongrand, J.-C. C. R. Hebd. Seances Acad. Sci.
The authors declare no competing financial interest.
1910, 150, 225−227. (b) Lamarre, N.; Gans, B.; Alcaraz, C.; Cunha de
Miranda, B.; Guillemin, J.-C.; Broquier, M.; Lievin, J.; Boye-Peronne,
S. Mol. Phys. 2015, 113, 3946−3954.
ACKNOWLEDGMENTS
■
This study is a part of the project ANR-13-BS05-0008
IMOLABS from the Agence Nationale pour la Recherche.
N.K. acknowledges the French Ministry of Research and
(18) (a) Huang, L. C. L.; Balucani, N.; Lee, Y. T.; Kaiser, R. I. J.
Chem. Phys. 1999, 111, 2857−2860. (b) Balucani, N.; Asvany, O.;
Huang, L. C. L.; Lee, Y. T.; Kaiser, R. I.; Osamura, Y.; Bettinger, H. F.
G
J. Org. Chem. XXXX, XXX, XXX−XXX