C O M M U N I C A T I O N S
Table 2. Palladium-Catalyzed Synthesis of Disaccharidesa
unnatural carbohydrates and should find useful applications in
carbohydrate chemistry.
Acknowledgment. We thank Princeton University for startup
funding and Hugh Stott Taylor and Atofina Fellowships (H.K.).
Supporting Information Available: Experimental procedures and
spectral data for all new compounds (PDF). This material is available
References
(1) (a) Toshima, K.; Tatsuta, K. Chem. ReV. 1993, 93, 1503. (b) Nicolaou,
K. C.; Mitchell, H. J. Angew. Chem., Int. Ed. 2001, 40, 1576.
(2) (a) Ferrier, R. J. J. Chem. Soc. C 1964, 5443. (b) Ferrier, R. J.; Ciment,
D. M. J. Chem. Soc. C 1966, 441. (c) Ferrier, R. J.; Prasad, N. J. Chem.
Soc., Chem. Commun. 1968, 476. (d) Ferrier, R. J.; Prasad, N. J. Chem.
Soc. C 1969, 570. (e) Ferrier, R. J.; Prasad, N. J. Chem. Soc. C 1969,
575. (f) Ferrier, R. J. AdV. Carbohydr. Chem. Biochem. 1969, 199. For
reviews, see: (g) Ferrier, R. J. Top. Curr. Chem. 2001, 215, 153. (h)
Ferrier, R. J.; Zubkov, O. A. Org. React. 2003, 62, 569.
(3) (a) Fraser-Reid, B. Acc. Chem. Res. 1975, 8, 192; 1985, 18, 347; 1996,
29, 57. (b) Levy, D. E.; Tang, C. The Chemistry of C-Glycoside; Pergamon
Press: Tarrytown, NY, 1995. (c) Postema, M. H. D. C-Glycoside
Synthesis; CRC Press: Boca Raton, FL, 1995. (d) Csuk, R.; Schaade,
M.; Krieger, C. Tetrahedron 1996, 52, 6397.
(4) The difficulty of forming a π-allylpalladium species from a glycal system
has been noted, see: (a) RajanBabu, T. V. J. Org. Chem. 1985, 50, 3642.
(b) Babu, R. S.; O’Doherty, G. A. J. Am. Chem. Soc. 2003, 125, 12406.
(5) For recent examples of Pd-catalyzed O-glycosylation using a more
activated pyranone system, see: (a) Comely, A. C.; Eelkema, R.;
Minnaard, A. J.; Feringa, B. L. J. Am. Chem. Soc. 2003, 125, 8714. (b)
Reference 4b.
(6) Kim, H.; Lee, C. Org. Lett. 2002, 4, 4369.
(7) Aranyos, A.; Old, D. W.; Kiyomori, A.; Wolfe, J. P.; Sadighi, J. P.;
Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 4369.
(8) Fraser-Reid, B.; Wu, Z.; Andrews, C. W.; Skowronski, E.; Bowen, J. P.
J. Am. Chem. Soc. 1991, 113, 1434.
(9) Spijker, N. M.; van Boeckel, C. A. A. Angew. Chem., Int. Ed. Engl. 1991,
30, 180.
(10) (a) Abdel-Rahman, A. A.-H.; Winterfield, G. A.; Takhi, M.; Schmidt, R.
R. Eur. J. Org. Chem. 2002, 713. (b) Babu, B. S.; Balasubramanian, K.
K. Synth. Commun. 1999, 29, 4299. (c) Grynkiewicz, G.; Priebe, W.;
Zamojski, A. Carbohydr. Res. 1979, 68, 33.
(11) The configuration of the new stereogenic center(s) of the product was
determined by 1H NMR analysis. See Supporting Information.
(12) (a) Murphy, P. V.; O’Brien, J. L.; Smith, A. B. Carbohydr. Res. 2001,
334, 327. (b) Friesen, R. W.; Danishefsky, S. J. Tetrahedron 1990, 46,
103.
(13) (a) Brown, H. C.; Geoghegan, P. J. J. Am. Chem. Soc. 1967, 89, 1522.
(b) Brown, H. C.; Geoghegan, P. J. J. Org. Chem. 1970, 35, 1844.
(14) (a) Servi, S. J. Org. Chem. 1985, 50, 5865. (b) Hart, D. J.; Hong, W. P.;
Hsu, L.-Y. J. Org. Chem. 1987, 52, 4665. (c) Haukaas, M. H.; O’Doherty,
G. A. Org. Lett. 2002, 4, 1771.
(15) Path A: (a) Ferrier, R. J.; Prasad, N. J. Chem. Soc. C 1969, 581. Path B:
(b) Trost, B. M.; Verhoeven, T. R. J. Am. Chem. Soc. 1980, 102, 4730.
(c) Ba¨ckvall, J.-E.; Nordberg, R. E. J. Am. Chem. Soc. 1981, 103, 4959.
Path C: (d) Takahashi, T.; Jinbo, Y.; Kitamura, K.; Tsuji, J. Tetrahedron
Lett. 1984, 25, 5921. (e) Granberg, K. L.; Ba¨ckvall, J.-E. J. Am. Chem.
Soc. 1992, 114, 6858. (f) Although Path D for a π-allylpalladium alkoxide
species is unreported, the reductive elimination mechanism of an arylpal-
ladium alkoxide species has been known. See: Widenhoefer, R. A.; Zhong,
H. A.; Buchwald, S. L. J. Am. Chem. Soc. 1997, 119, 6787.
(16) Trost, B. M.; Van Vranken, D. L. Chem. ReV. 1996, 96, 395.
(17) (a) Steinhuebel, D. P.; Fleming, J. J.; Du Bois, J. Org. Lett. 2002, 4, 293.
(b) In control experiments, both 1 and 1′ failed to undergo the O-
glycosylation in the absence of a Zn(II) ion. Also see refs 4 and 5.
a All reactions were performed with 1.5 equiv of acceptor, 0.8 equiv of
Et2Zn, 10 mol % of Pd(OAc)2, and 15 mol % of DTBBP (entries 1-10) or
b
30 mol % of P(OMe)3 (entries 6-10) in THF at 25 °C for 48 h. 1H NMR
ratio. c Isolated yields. d Single isomer (dr > 25:1). e The donor was slowly
added over 8 h via a syringe pump. f R:â ) 9:1. g R:â ) 12:1. h R:â ) 8:1.
i 20 mol % of Pd(OAc)2/60 mol % of P(OMe)3.
Zn(II) ion in this reaction appears to play an important dual role of
activating both the acceptor for the nucleophilic addition and the
leaving group for the ionization.17
We have developed a new Pd-catalyzed O-glycosylation method
that allows for the direct use of readily available glycal derivatives
as donors. Notably, the anomeric stereochemistry is effectively
controlled by the reagent, independent of the steric and electronic
nature of the substrates. Also demonstrated is the utility of the 2,3-
unsaturated pyranoside product through stereoselective alkene
addition reactions. This combination of the glycosylation and
subsequent elaboration provides a novel entry to natural and
JA039746Y
9
J. AM. CHEM. SOC. VOL. 126, NO. 5, 2004 1337