Page 5 of 6
Organic Process Research & Development
(5) Sadowski, B.; Klajn, J.; Gryko, D. T. Recent Advances in the
Synthesis of Indolizines and Their π-Expanded Analogues. Org. Biomol.
Chem. 2016, 14, 7804–7828.
(6) For some recent syntheses of 2-haloindolizines, see: (a) via
orthometallation: Amaral, M. F. Z. J.; Baumgartner, A. A.; Vessecchi, R.;
Clososki, G.C. Directed Metalation of 1-Ester Substituted Indolizines:
Base/Electrophile-Controlled Regioselective Functionalization Org. Lett.
2015, 17, 238-241. (b) via [3+3] annulation: Park, S.; Kim, I. Electron-
withdrawing group effect in aryl group of allyl bromides for the successful
Coupling/Cycloisomerization Cascade. Chem. Commun. 2015, 51, 6633–
6636. (g) For a review, see: Wang, L.-X.; Tang, Y.-L. Cycloisomerization
of Pyridine-Substituted Propargylic Alcohols or Esters to Construct
Indolizines and Indolizinones. Eur. J. Org. 2017, 2207-2213.
(12) Vanitcha, A.; Gontard, G.; Vanthuyne, N.; Derat, E.; Mouriès-
Mansuy, V.; Fensterbank, L. Synthesis of Allenes Bearing Phosphine
Oxide Groups and Investigation of Their Reactivity toward Gold
Complexes. Adv. Synth. Catal. 2015, 357, 2213–2218.
1
2
3
4
5
6
7
8
(13) Grandclaudon, C.; Michelet, V.; Toullec, P. Y. Synthesis of
Polysubstituted 2-Iodoindenes via Iodonium-Induced Cyclization of
Arylallenes. Org. Lett. 2016, 18, 676–679.
synthesis of indolizines via
a novel [3+3] annulation approach
Tetrahedron 2015, 71, 1982-1991. (c) via a brominated pyrrole: Kodet, J.
G.; Wiemer, D. F. Synthesis of Indole Analogues of the Natural
Schweinfurthins J. Org. Chem. 2013, 78, 9291-9302.
(14) (a) Jansen, A.; Krause, N. Transition Metal-Promoted Synthesis of
Functionalized and Unfunctionalized Pyridylallenes. Synthesis (Stuttg).
2002, 14, 1987–1992. (b) Jansen, A.; Krause, N. Exceptional Reactivity
and Selectivity of Lower-Order Cyanocuprates in the SN2′-Substitution of
Propargyl Acetates. Inorganica Chim. Acta 2006, 359, 1761–1766. (c)
Löhr, S.; Averbeck, J.; Schürmann, M.; Krause, N. Synthesis and
Complexation Properties of Allenic Bipyridines, a New Class of Axially
Chiral Ligands for Transition Metal Catalysis. Eur. J. Inorg. Chem. 2008,
552–556.
(15) For some oxidations of dihydropyridines, (a) with DDQ, see:
Gerasyuto, A. I.; Hsung, R. P. An Intramolecular aza-[3+3] Annulation
Approach to Azaphenalene Alkaloids. Total Synthesis of Myrrhine J. Org.
Chem. 2007, 72, 5934-5946. (b) with Br2 or NBS, see: Parenty, A. D.;
Smith, L. V.; Pickering, A. L.; Long, D.-L.; Cronin, L. General One-Pot,
Three-Step Methodology Leading to an Extended Class of N-Heterocyclic
Cations: Spontaneous Nucleophilic Addition, Cyclization and Hydride
Loss J. Org. Chem. 2004, 69, 5934-5946.
(16) The introduction of a succinimidyl group at the 2-position has been
reported from pyridine oxides, see: Zucker, S.A.; Wossidlo, F.; Weber,
M.; Lentz, D.; Tzschucke, Palladium-Catalyzed Directed Halogenation of
Bipyridine N-Oxides J. Org. Chem. 2017, 82, 5616-5635. We thank one
referee for bringing this paper to our attention and for helpful remarks.
(17) The structure was deposited at the Cambridge Crystallographic
Data Centre with number CCDC 1955817 and can be obtained free of
(18) (a) Gillis, E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.;
Meanwell, N. A. Applications of Fluorine in Medicinal Chemistry. J.
Med. Chem. 2015, 58, 8315–8359. (b) Purser, S.; Moore, R. P.; Swallow,
S.; Gouverneur, V. Fluorine in Medicinal Chemistry. Chem. Soc. Rev.
2008, 37, 320–330. (c) Wang, J.; Sanchez-Rosello, M.; Acena, J.-L.; del
Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H.
Fluorine in Pharmaceutical Industry: Fluorine-Containig Drugs Intrduced
to the Market in the Last Decade (2001 - 2011) Chem. Rev. 2014, 114,
2432-2506.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(7) (a) Wang, X.; Li, S. Y.; Pan, Y. M.; Wang, H. S.; Liang, H.; Chen,
Z. F.; Qin, X. H. Samarium(III)-Catalyzed C(Sp3)-H Bond Activation:
Synthesis of Indolizines via C-C and C-N Coupling between 2-
Alkylazaarenes and Propargylic Alcohols. Org. Lett. 2014, 16, 580–583.
(b) Chai, W.; Kwok, A.; Wong, V.; Carruthers, N. I.; Wu, J. A Practical
Parallel Synthesis of 2-Substituted Indolizines. Synlett 2003, 2003, 2086–
2088. (c) Tan, X. C.; Liang, Y.; Bao, F. P.; Wang, H. S.; Pan, Y. M.
Silver-Mediated C-H Bond Functionalization: One-Pot to Construct
Substituted Indolizines from 2-Alkylazaarenes with Alkynes. Tetrahedron
2014, 70, 6717–6722. (d) Kucukdisli, M.; Opatz, T. A Modular Synthesis
of Polysubstituted Indolizines. Eur. J. Org. Chem. 2012, 2012, 4555–
4564. (e) Li, F.; Chen, J.; Hou, Y.; Li, Y.; Wu, X. Y.; Tong, X. 1,3-
Dipolar Cycloadditions of 4-Acetoxy Allenoates: Access to 2,3-
Dihydropyrazoles, 2,3-Dihydroisoxazoles, and Indolizines. Org. Lett.
2015, 17, 5376–5379. (f) Brioche, J.; Meyer, C.; Cossy, J. Synthesis of 2-
Aminoindolizines by 1,3-Dipolar Cycloaddition of Pyridinium Ylides with
Electron-Deficient Ynamides. Org. Lett. 2015, 17, 2800–2803. (g)
Chernyak, D.; Skontos, C.; Gevorgyan, V. Two-Component Approach
toward a Fully Substituted N-Fused Pyrrole Ring. Org. Lett. 2010, 12,
3242–3245. (h) Li, Z.; Chernyak, D.; Gevorgyan, V. Palladium-Catalyzed
Carbonylative Cyclization/Arylation Cascade for 2-Aroylindolizine
Synthesis. Org. Lett. 2012, 14, 6056–6059. (i) Xu, T.; Alper, H. Synthesis
of Indolizine Derivatives by Pd-Catalyzed Oxidative Carbonylation. Org.
Lett. 2015, 17, 4526–4529. (j) Kim, I.; Won, H. K.; Choi, J.; Lee, G. H. A
Novel and Efficient Approach to Highly Substituted Indolizines via 5-
Endo-Trig Iodocyclization. Tetrahedron 2007, 63, 12954–12960
(8) Kim, I.; Choi, J.; Won, H. K.; Lee, G. H. Expeditious Synthesis of
Indolizine Derivatives via Iodine Mediated 5-Endo-Dig Cyclization.
Tetrahedron Lett. 2007, 48, 6863–6867.
(9) For an extension of this work, see also : (a) Choi, J.; Ge, H. L.; Kim,
I. Efficient Synthesis of Highly Substituted Indolizinones via
Iodocyclization and 1,2-Shift. Synlett 2008, 1243–1249. (b) Heller, S. T.;
Kiho, T.; Narayan, A. R. H.; Sarpong, R. Protic-Solvent-Mediated
Cycloisomerization of Quinoline and Isoquinoline Propargylic Alcohols:
Syntheses of (±)-3-Demethoxyerythratidinone and (±)-Cocculidine.
Angew. Chem. Int. Ed. 2013, 52, 11129–11133. (c) Makarov, A. S.;
Uchuskin, M. G.; Hashmi, A. S. K. Intramolecular Azavinyl Carbene-
Triggered Rearrangement of Furans Chem. Sci. 2019, DOI 10.1039
/c9sc02299f.
(10) (a) Ma, S. Eelctrophilic Addition and Cyclization Reactions of
Allenes Acc. Chem. Res. 2009, 42, 1679-1688. (b) Caneque, T.; Truscott,
F. M.; Rodriguez, R.; Maestri, G.; Malacria, M. Eelctrophilic Activation
of Allenenes and Allenynes: Analogies and Differences between Bronsted
and Lewis Acid Activation Chem. Soc. Rev. 2014, 43, 2916-2926.
(11) (a) Yan, B.; Zhou, Y.; Zhang, H.; Chen, J.; Liu, Y. Highly Efficient
Synthesis of Functionalized Indolizines and Indolizinones by Copper-
Catalyzed Cycloisomerizations of Propargylic Pyridines. J. Org. Chem.
2007, 72, 7783–7786. (b) Seregin, I. V.; Schammel, A. W.; Gevorgyan, V.
Multisubstituted N-Fused Heterocycles via Transition Metal-Catalyzed
Cycloisomerization Protocols. Tetrahedron 2008, 64, 6876–6883. (c)
Kel’in, A. V.; Sromek, A. W.; Gevorgyan, V. A Novel Cu-Assisted
Cycloisomerization of Alkynyl Imines: Efficient Synthesis of Pyrroles and
Pyrrole-Containing Heterocycles. J. Am. Chem. Soc. 2001, 123, 2074–
2075. (d) Chernyak, D.; Gadamsetty, S. B.; Gevorgyan, V. Low
Temperature
Organocopper-Mediated
Two-Component
Cross
Coupling/Cycloisomerization Approach toward N-Fused Heterocycles.
Org. Lett. 2008, 10, 2307–2310. (e) Chernyak, D.; Gevorgyan, V.
Organocopper-Mediated Two-Component SN2’-Substitution Cascade
towards N-Fused Heterocycles. Chem. Heterocycl. Compd. 2012, 47,
1516–1526. (f) Zhang, L.; Li, X.; Liu, Y.; Zhang, D. Palladium-Catalyzed
Highly Efficient Synthesis of Functionalized Indolizines via Cross-
5
ACS Paragon Plus Environment