the same reaction conditions resulting in 5-hydroxypentan-2-one
(CH3C(16O)CH2CH2CH2OH) which was extracted by Et2O for
GC-MS analysis.
9 (a) O. Blum and D. Milstein, J. Am. Chem. Soc., 1995, 117, 4582; (b) A.
Vigalok, H. B. Kraatz, L. Konstantinovsky and D. Milstein, Chem.–
Eur. J., 1997, 3, 253; (c) M. E. Van Der Boom, C. L. Higgitt and D.
Milstein, Organometallics, 1999, 18, 2413; (d) O. Blum and D. Milstein,
J. Organomet. Chem., 2000, 593–594, 479.
10 (a) E. J. Alexanian and J. F. Hartwig, J. Am. Chem. Soc., 2008, 130,
15627; (b) J. Zhao, H. Hesslink and J. F. Hartwig, J. Am. Chem. Soc.,
2001, 123, 7220; (c) C. Krug and J. F. Hartwig, J. Am. Chem. Soc., 2002,
124, 1674.
11 (a) J. X. McDermott, J. F. White and G. M. Whitesides, J. Am. Chem.
Soc., 1976, 98, 6521; (b) J. A. Keith, J. Oxgaard and W. A. Goddard
III, J. Am. Chem. Soc., 2006, 128, 3132; (c) K. A. Bernard, W. M. Rees
and J. D. Atwood, Organometallics, 1986, 5, 390; (d) J. C. M. Ritter
and R. G. Bergman, J. Am. Chem. Soc., 1998, 120, 6826; (e) J. Vela, S.
Vaddadi, T. R. Cundari, J. M. Smith, E. A. Gregory, R. J. Lachicotte,
J. Flaschenriem and P. L. Holland, Organometallics, 2004, 23, 5226;
(f) D. M. Hoffman, D. Lappas and D. A. Wierda, J. Am. Chem. Soc.,
1989, 111, 1531.
12 (a) H. E. Bryndza, J. C. Calabrese, M. Marsi, D. C. Roe, W. Tam and J.
E. Bercaw, J. Am. Chem. Soc., 1986, 108, 4805; (b) P. J. Chirik and J. E.
Bercaw, Organometallics, 2005, 24, 5407; (c) P. J. Chirik, M. W. Day, J.
A. Labinger and J. E. Bercaw, J. Am. Chem. Soc., 1999, 121, 10308.
13 (a) J. P. Collman, A. S. Chien, T. A. Eberspacher and J. I. Brauman,
J. Am. Chem. Soc., 1998, 120, 425; (b) J. P. Collman and R. Boulatov,
Inorg. Chem., 2001, 40, 560.
Kinetics of BHE of (1) in pH = 8.0 buffers at 318–338 K
The degassed samples containing complex 1 and 10 equiv. of 4-
penten-1-ol in pH = 8.0 buffers were heated in a water bath at
318–338 K, and the progress of the reaction was monitored by
1H NMR spectroscopy. The BHE kinetics data were obtained
1
from the integration ratio of pyrrole hydrogen resonances in H
NMR of 1 and (TSPP)RhI. First order rate kinetics were observed
1
at different temperatures from H NMR spectroscopy and the
activation enthalpy (DH‡) and entropy (DS‡) of the BHE of 1 are
derived according to the Eyring plot.
BHE of (1) in pH = 9.0 buffers at 353 K with TEMPO
The degassed sample containing complex 1 and TEMPO in pH =
9.0 buffer D2O solution in a J. Young Valve NMR tube was heated
in a water bath at 353 K for 4 h. After the reactions reached
completion, ketones and (TSPP)RhI were confirmed by 1H NMR
spectroscopy.
14 (a) N. A. Smythe, K. A. Grice, B. S. Williams and K. I. Goldberg,
Organometallics, 2009, 28, 277; (b) T. R. Cundari and C. D. Taylor,
Organometallics, 2003, 22, 4047; (c) I. Matas, J. Ca´mpora, P. Palma and
´
E. Alvarez, Organometallics, 2009, 28, 6515; (d) J. Muzart, Tetrahedron,
2007, 63, 7505.
Kinetics of BOE of (1) in pH = 9.0 buffers at 288–308 K
15 (a) R. Pryadun, D. Sukumaran, R. Bogadi and J. D. Atwood, J. Am.
Chem. Soc., 2004, 126, 12414; (b) R. S. Pryadun and J. D. Atwood,
Organometallics, 2007, 26, 4830.
The complex 1 and 30 equiv. of pyrrolidine in pH = 9.0 buffers
were transferred to J. Young Valve NMR tubes and degassed. The
progress of the reaction was monitored by 1H NMR spectroscopy
in the range of 288–308 K. First order rate kinetics were observed
16 X. Fu, S. Li and B. B. Wayland, J. Am. Chem. Soc., 2006, 128, 8947.
17 (a) Y. Han, M. S. Sanford, M. D. England and J. T. Groves, Chem.
Commun., 2006, 549; (b) M. S. Sanford and J. T. Groves, Angew. Chem.,
Int. Ed., 2004, 43, 588.
18 (a) B. S. Williams and K. I. Goldberg, J. Am. Chem. Soc., 2001, 123,
2576; (b) B. S. Williams, A. W. Holland and K. I. Goldberg, J. Am.
Chem. Soc., 1999, 121, 252; (c) A. J. Canty, M. C. Denney, G. Koten,
B. W. Skelton and A. H. White, Organometallics, 2004, 23, 5432; (d) U.
Fekl and K. I. Goldberg, Adv. Inorg. Chem., 2003, 54, 259; (e) A.
N. Vedernikov, S. A. Binfield, P. Y. Zavalij and J. R. Khusnutdinova,
J. Am. Chem. Soc., 2006, 128, 82; (f) J. R. Khusnutdinova, P. Y.
Zavalij and A. N. Vedernikov, Organometallics, 2007, 26, 3466; (g) J.
R. Khusnutdinova, L. L. Newman, P. Y. Zavalij, Y.-F. Lam and A. N.
Vedernikov, J. Am. Chem. Soc., 2008, 130, 2174.
19 (a) G. N. Schrauzer and J. H. Grate, J. Am. Chem. Soc., 1981, 103,
541; (b) J. H. Grate and G. N. Schrauzer, J. Am. Chem. Soc., 1979, 101,
4601.
20 (a) B. P. Hay and R. G. Finke, J. Am. Chem. Soc., 1987, 109, 8012;
(b) G. N. Schrauzer, J. H. Weber and T. M. Beckham, J. Am. Chem.
Soc., 1970, 92, 7079.
21 (a) T. Tsou, M. Loots and J. Halpern, J. Am. Chem. Soc., 1982, 104,
623–624; (b) J. Halpern, Acc. Chem. Res., 1982, 15, 238–244; (c) M.
P. Jensen and J. Halpern, J. Am. Chem. Soc., 1999, 121, 2181; (d) M.
Okazaki, H. Tobita and H. Ogino, Dalton Trans., 2003, 493.
22 (a) K. J. Del Rossi and B. B. Wayland, J. Am. Chem. Soc., 1985, 107,
7941; (b) B. B. Wayland, S. L. V. Voorhees and K. J. Del Rossi, J. Am.
Chem. Soc., 1987, 109, 6513.
23 (a) K. W. Mak and K. S. Chan, J. Am. Chem. Soc., 1998, 120, 9686;
(b) S. K. Yeung and K. S. Chan, Organometallics, 2005, 24, 2561; (c) K.
W. Mak, F. Xue, T. C. W. Mak and K. S. Chan, Dalton. Trans., 1999,
3333.
24 (TPP)Rh-CH2CH(OH)CH2CH2CH2CH3 was synthesized following
reference 17a. To a solution of 10 mg (TPP)Rh–I in 10 mL of degassed
ethanol, 0.5 mL of 0.5 N aqueous NaOH solution containing 5 mg
NaBH4was added. The mixture was degassed and stirred at 60 ◦C for
2 h and then cooled down to room temperature. 1,2-expoxyhexane
(2 mL) was added and the product was isolated by chromatographic
column.
25 (a) J. Zhang, B. B. Wayland, L. Yun, S. Li and X. Fu, Dalton Trans.,
2010, 39, 477; (b) J. Zhang, B. B. Wayland, L. Yun, S. Li and X. Fu,
Dalton Trans., 2010, 39, 477; (c) L. Liu, M. Yu, B. B. Wayland and X.
Fu, Chem. Commun., 2010, 46, 6353.
1
at different temperatures from H NMR spectroscopy. The first
order rate kinetics of BOE at different temperatures gave activation
enthalpy (DH‡) and entropy (DS‡) of the BOE of 1 according to
the Eyring plot.
The IND of (TSPP)Rh-CH2CH(OH)CH2CH2CH2OH in DMSO
The (TSPP)Rh-CH2CH(OH)CH2CH2CH2OH was dissolved in
KOH/DMSO-d6 (cKOH = 3.3 mg mL-1) under an argon atmosphere
in vacuum adapted NMR tubes and the solution underwent a
color change to a brownish solution within minutes at room tem-
perature. 1H NMR spectra confirmed the formation of (TSPP)RhI.
The resulting 4,5-epoxypentan-1-ol was extracted into Et2O and
examined by GC-MS.
Notes and references
1 B. de Bruin, P. H. M. Budzelaar and A. W. Gal, Angew. Chem., Int.
Ed., 2004, 43, 4142.
2 C. Hahn, Chem.–Eur. J., 2004, 10, 5888–5899.
3 A. R. Chianese, S. J. Lee and M. R. Gagne´, Angew. Chem., Int. Ed.,
2007, 46, 4042.
4 K. M. Gligorich and M. S. Sigman, Chem. Commun., 2009, 3854.
5 S. S. Stahl, Angew. Chem., Int. Ed., 2004, 43, 3400–3420.
6 T. Punniyamurthy, S. Velusamy and J. Iqbal, Chem. Rev., 2005, 105,
2329–2363.
7 C. Liu, C. F. Bender, X. Han and R. A. Widenhoefer, Chem. Commun.,
2007, 3607.
8 (a) D. Dolphin, A. Matsumoto and C. Shortman, J. Am. Chem.
Soc., 1989, 111, 411; (b) Y. S. Lin, S. Takeda and K. Matsumoto,
Organometallics, 1999, 18, 4897; (c) N. Saeki, N. Nakamura, T.
Ishibashi, M. Arime, H. Sekiva, K. Ishihara and K. Matsumoto, J. Am.
Chem. Soc., 2003, 125, 3605; (d) D. J. Nelson, R. Li and C. Brammer,
J. Am. Chem. Soc., 2001, 123, 1564.
This journal is
The Royal Society of Chemistry 2011
Dalton Trans., 2011, 40, 2213–2217 | 2217
©