10.1002/chem.201703526
Chemistry - A European Journal
COMMUNICATION
L.-X. Wang, J. Org. Chem. 2012, 77, 2947-2953; c) M.-X. Zhao, F.-H. Ji,
D.-K- Wei, M. Shi, Tetrahedron 2013, 69, 10763-10771.
(Vinylselenones) d) T. Buyck, Q. Wang, J. Zhu, Angew. Chem. 2013,
125, 12946-12950; Angew. Chem. Int. Ed. 2013, 52, 12714-12718. (-
Pyridyl acrylonitriles) e) C. D. Fiandra, M. Moccia, V. Cerulli, M. F. A.
Adamo, Chem. Commun. 2016, 52, 1697-1700.
Sumaria, T. D. Montgomery, V. H. Rawal, J. Am. Chem. Soc. 2017, 139,
5297−5300.
[23] F. Manoni, S. J. Connon Angew. Chem. 2014, 126, 2666-2670; Angew.
Chem. Int. Ed. 2014, 53, 2628-2632.
[24] a . adiola . iser . e -Bengoa, A. Mielgo, I. Olaizola, I.
Urruzuno, J. M. García, J. M. Odriozola, J. Razkin, M. Oiarbide, C.
Palomo, J. Am. Chem. Soc. 2014, 136, 17869-17881; For a review on
masked unsaturated esters in organocatalysis, see b) D. Monge, H.
Jiang, Y. Alvarez-Casao, Chem. Eur. J. 2015, 21, 4494-4504.
[25] a) D. A. Alonso, S. Kitagaki, N. Utsumi, C. F. Barbas III, Angew. Chem.
2008, 120, 4664-4667; Angew. Chem. Int. Ed. 2008, 47, 4588-4591; b)
M. C. Kohler, J. M. Yost, M. R. Garnsey, D. M. Coltart, Org. Lett. 2010,
12, 3376-3379; c) J. Guang, A. J. Larson, J. C. G. Zhao, Adv. Synth.
Catal. 2015, 357, 523-529; d) S. Duce, M. Jorge, I. Alonso, J. L. García
Ruano, M. B. Cid Eur. J. Org. Chem. 2013, 7067-7075.
[15] While -aryl isocyanoacetate esters are common substrates in the
reported organocatalytic methods (ref. 13), the -alkyl analogues are
recalcitrant, leading to no reaction at all (ref.13a,c) or poor selectivities
(two entries in ref. 13b: dr 55:45, ee <60%). Also, see: ref. 5a, 7, 8, and
11.
[16] Reviews on tetrasubstituted carbon stereocenters: a) A. Y. Hong, B. M.
Stoltz, Eur. J. Org. Chem. 2013, 2745-2759; b) J. P. Das, I. Marek,
Chem. Commun. 2011, 47, 4593-4623; c) M. Bella, T. Caspery,
Synthesis 2009, 1583-1614; d) P. G. Cozzi, R. Hilgraf, N. Zimmerman,
Eur. J. Org. Chem. 2007, 5969-1614; e) B. M. Trost, C. Jiang,
Synthesis 2006, 369-396; f) Quaternary Stereocenters (Ed.: J.
Christoffers, A. Baro), Wiley-VCH, Weinheim, 2005; g) C. J. Douglas, L.
E. Overman, Proc. Nat. Acad. Sci. 2004, 101, 5363-5367. For a review
on metal-catalyzed conjugate additions leading to all-carbon quaternary
stereocenters, see: h) C. Hawner, A. Alexakis, Chem. Commun. 2010,
46, 7295-7306.
[26] I. Iriarte, O. Olaizola, S. Vera, I. Ganboa, M. Oiarbide, C. Palomo,
Angew. Chem. 2017, 129, 8986-8990; Angew. Chem. Int. Ed. 2017, 56,
8860-8864.
[27] E. Cosimi, O. D. Engl, J. Saadi, M.-O. Ebert, H. Wennemers Angew.
Chem. 2016, 128, 13321-13325; Angew. Chem. Int. Ed. 2016, 55,
13127-13131.
[28] B. H. Rotstein, D. J. Winternheimer, L. M. Yin, C. M. Deber, A. K. Yudin,
Chem. Commun. 2012, 48, 3775-3777.
[17] Reviews on Brønsted base catalysis: a) C. Palomo, M. Oiarbide, R.
Lopez, Chem. Soc. Rev. 2009, 38, 632-653; b) Asymmetric
Organocatalysis 2, Brønsted Base and Acid Catalysis, and Additional
Topics: Science of Synthesis (Ed.: K. Maruoka), Thieme, Stuttgart,
2012; c) A. Ting, J. M. Gross, N. T. McDougal, S. E. Schaus, Top. Curr.
Chem. 2010, 291, 145-200.
[29] Sulfa-Michael adducts may arise from traces of arylthiol realeased via
base-promoted ketene formation. The identity of byproducts was
confirmed by comparison with authetic samples.
[30] Potential problems arising from the use of thioesters, such as ketene
formation and acyl transfer processes, have been previously noted.
See reference 25b.
[18] See the Supporting Information for details.
[19] a) W. Yang; D.-M. Du, Org. Lett. 2010, 12, 5450-5453; b) L. Dai, S.-X.
Wang, F.-E. Chen, Adv. Synth. Catal. 2010, 352, 2137-2141. Pionering
work on squaramide catalysts, see: c) J. P. Malerich, K. Hagihama, V.
R. Rawal, J. Am. Chem. Soc. 2008, 130, 14416-14417; d) Y. Zhu, J. P.
Malerich, V. H. Rawal, Angew. Chem. 2010, 122, 157-160; Angew.
Chem. Int. Ed. 2010, 49, 153-156;
[31] This reactivity pattern appears to be independent of the acceptor. For
example, whilst N-phenyl maleimide hardly reacts with -benzyl
isocyanoacetate methyl ester under Brønsted base catalysis (ref 14c),
the reaction with isocyanothioacetate 6B proceeded smoothly (10 mol%
C6, RT, overnight) to provide the corresponding adduct in 70% isolated
yield, albeit as a mixture of diastereomers (dr= 70:30, 68%/80% ee).
[32] For a previous study on reducing agents of the imine moiety on related
compounds, see: M. Lee, Y.-J. Lee, E. Park, Y. Park, M. W. Ha, S.
Hong, Y. J. Lee, T.-S. Kim, M.-h. Kim, H.-g. Park, Org. Biomol. Chem.
2013, 11, 2039-2046.
[20] a) I. Urruzuno, O. Mugica, M. Oiarbide, C. Palomo, Angew. Chem.
2017, 129, 2091-2095; Angew. Chem. Int. Ed. 2017, 56, 2059-2063; b)
E. Badiola, I. Olaizola, A. Vázquez, S. Vera, A. Mielgo, C. Palomo,
Chem. Eur. J. 2017, 23, 8185-8195.
[21] For reviews on squaramide catalysts, see: a) R. I. Storer, C. Aciro, L. H.
Jones, Chem. Soc. Rev. 2011, 40, 2330-2346; b) J. Alemán, A. Parra,
H. Jiang, K. A. Jørgensen, Chem. Eur. J. 2011, 17, 6890-6899; c) P.
Chauahn, S. Mahahan, U. Kaya, D. Hack, D. Enders, Adv. Synth. Catal.
2015, 357, 253-281.
[33] CCDC 1555683 (catalyst C6), CCDC 1555682 (compound 13) and
CCDC 1555684 (compound 22) contain the supplementary
crystallographic data for this paper. These data can be obtained from
the
Cambridge
Crystallographic
Data
Centre
via
for details.
[22] Recently, bifunctional thiosquaramides have been described as efficient
catalysts with the two NH hydrogen atoms positioned for the two
rotamers 2.43 Å and 2.64 Å apart, respectively. See: M. Rombola, C. S.
[34] AgNO3, AgOTf and AgOAc were also tested as alternative silver source,
but among them only the latter was effective.
This article is protected by copyright. All rights reserved.