324
V. Dokorou et al. / Journal of Organometallic Chemistry 689 (2004) 317–325
CCDC-1003/m. Copies of available material can be
obtained, free of charge, on application to CCDC, 12
Union Road, Cambridge CB2 1EZ, UK, (fax: +44-1223-
336033 or e-mail: deposit@ccdc.cam.ac.uk.
References
[1] (a) J.S. Kaltenbrom, R.A. Scherrer, F.W. Short, H.R. Beatty,
M.M. Saka, C.V. Winder, J. Wax, W.R.N. Williamson, Arzneim.-
Forsch./Drug Res. 33 (1) (1983) 621;
(b) D.K. Chalmers, G.H. Scholz, D.J. Topliss, E. Koliniatis,
S.L.A. Munro, D.J. Craik, M. Iskander, J.R. Stockigt, J. Med.
Chem. 36 (1993) 1272.
[2] A.G. Davies, Organotin Chemistry, VCH, Weinheim, 1997;
P.J. Smith (Ed.), Chemistry of Tin, second ed., Blackie Academic
and Professional, London, England, 1998.
Fig. 4. Electronic absorption spectra of ligand 1 and diorganotin
complexes 2 and 3 in DMF solution (5 ꢁ 10ꢀ5).
[3] (a) M. Gielen, Appl. Organomet. Chem. 16 (2002) 481;
(b) M. Gielen, Coord. Chem. Rev. 15 (1996) 41;
(c) S.J. Blunden, P.A. Cusack, R. Hill, Industrial Uses of Tin
Chemicals, Royal Society of Chemistry, London, 1985;
(d) A.J. Crowe, in: M. Gielen (Ed.), Metal-Based Antitumour
Drugs, vol. 1, Freund, London, 1989.
method using the CACAO PC Beta-Version 5.0 package
geometry [14]. The molecular geometry was established
by using the crystallographic coordinates of the com-
€
plexes 2 and 3. The extended-Huckel calculation using
[4] (a) P. Tauridou, U. Russo, G. Valle, D. Kovala-Demertzi, J.
Organomet. Chem. 44 (1993) C16;
the crystallographic coordinates of 2 gives the following
results: the HOMO orbital ()9.866 eV) is composed of
px orbitals from Sn(1)px 14%(+), Sn(2)px 13%(+), of py
from Sn(2)py 34%()), O(2A)py 5%()) and of pz orbital
from Sn(1) pz 6%()); the LUMO orbital ()9.309 eV) is
composed of pz orbitals from O(3)pz 4%(+), O(4)pz
5%(+), C(16)pz 26%()), C(18)pz 10%(+), C(20)pz 13%())
(b) D. Kovala-Demertzi, P. Tauridou, A. Moukarika, J.M.
Tsangaris, C.P. Raptopoulou, A. Terzis, J. Chem. Soc. Dalton
(1995) 123;
(c) D. Kovala-Demertzi, P. Tauridou, U. Russo, M. Gielen, Inorg.
Chim. Acta 239 (1995) 177;
(d) N. Kourkoumelis, A. Hatzidimitriou, D. Kovala-Demertzi, J.
Organomet. Chem. 514 (1996) 163;
€
and C(22)pz 6%(+). The extended-Huckel calculation
(e) S.K. Hadjikakou, M.A. Demertzis, J.R. Miller, D. Kovala-
Demertzi, J. Chem. Soc. Dalton Trans (1999) 663.
[5] (a) V. Dokorou, Z. Ciunik, U. Russo, D. Kovala-Demertzi, J.
Organomet. Chem. 630 (2001) 205;
using the crystallographic coordinates of 3 gives the
following results: the HOMO for ()11.476) eV) is
composed of pz orbitals from Sn(1) pz 7%(ꢀ), C(17A)pz
13%(+), C(16B)pz 6%(+), C(17B)pz 8%(ꢀ), C(18B)pz
8%(+) and py orbitals from C(16B) py 15%(+); the
LUMO ()9.316 eV) is composed of pz from O(1A)pz
5%(ꢀ), C(1A)pz 28%(+), C(5A)pz 11%(+), C(7A)pz
11%()) and py orbitals from C(1A) py 5%(+).
The broad band at 398 nm for 2 and 3 respectively is
assignable to Homo–Lumo transition. The Homo orbital
for 2 is mainly centered on metal centers Sn(1) and Sn(2)
while the Lumo orbital is centered on an anthranilic ring.
The Homo orbital for 3 is a mixed orbital centered on
the metal Sn center and the donor carbon atoms while the
Lumo orbital is centered on an anthranilic ring. The
strong broad bands at 329 and 336 for 2 and 3 respec-
tively are assignable to intraligand and charge transfer
transitions [15], and the strong band at ꢄ275 and 273 nm
for 2 and 3 is assigned to intraligand transition.
(b) D. Kovala-Demertzi, N. Kourkoumelis, A. Koutsodimou, A.
Moukarika, E. Horn, E.R.T. Tiekink, J. Organomet. Chem. 620
(2001) 194;
(c) N. Kourkoumelis, D. Kovala-Demertzi, E. Tiekink, Z.
Crystallogr. 214 (1999) 758.
[6] (a) PATTY: P.T. Beurskens, G. Admiraal, G. Beurskens, W.P.
Bosman, S. Garcia-Granda, R.O. Gould, J.M.M. Smits, C.
Smykalla, 1992;
(b) SAPI91: Fan Hai-Fu. Structure Analysis Programs with
Intelligent Control, Rigaku Corporation, Tokyo, Japan, 1991
(c) P.T. Beurskens, G. Admiraal, G. Beurskens, W.P. Bosman, R.
de Gelder, R. Israel, J.M.M. Smits, The DIRDIF-94 program
system, Technical Report of the Crystallography Laboratory,
University of Nijmegen, 1994;
(d) G.M. Sheldrick, SHELXL97, program for crystal structure
€
refinement, University of Gottingen, 1997.
[7] (a) D.T. Cromer, J.T. Waber, in: International Tables for X-ray
Crystallography, vol. 4, The Kynoch Press, Birmingham, En-
gland, 1974, Table 2.2 A;
(b) J.A. Ibers, W.C. Hamilton, Acta Crystallogr. 17 (1964)
781;
(c) D.C. Creagh, W.J. McAuley, in: A.J.C. Wilson (Ed.),
International Tables for Crystallography, vol. C, Kluwer Aca-
demic Publishers, Boston, 1992, Table 4.2.6.8;
4. Supplementary material
(d) teXsan for Windows version 1.06: Crystal Structure Analysis
Package, Molecular Structure Corporation, 1997;
(e) L.J. Farrugia, J. Appl. Cryst. 32 (1999) 837;
(f) A.L. Spek, PLATON.A Program for the automated genera-
tion of a variety of geometrical entities, University of Utrecht, The
Netherlands, 2002.
Crystallographic data i.e., atomic coordinates, ther-
mal parameters, bond lengths and bond angles) CCDC
numbers 218732 and 218733 for 2 and 3 respectively,
have been deposited with the Cambridge Crystallo-
graphic Data Centre as supplementary publication no.