X. Wen, P. G. Hultin / Tetrahedron Letters 45 (2004) 1773–1775
1775
8. Xie, J.; Molina, A.; Czernecki, S. J. Carbohydr. Chem.
1999, 18, 481–498.
ride/pyridine, SOCl2/pyridine, POCl3/pyridine) only
afforded complex mixtures. Hydrogenation of olefin 14
quantitatively furnished the product 2. Efficient methods
for the conversion of C-glycosylphosphonate diesters
similar to 1 and 2 to the corresponding phosphonate
monoesters or phosphonic acids have been reported.18
9. For the a C-glycosyl analogues of N-acetyl mannosamine
and N-acetyl glucosamine 1-O-phosphates, see Ref. 2b.
10. Holmquist, L. Acta Chem. Scand. 1970, 24, 173–178.
11. Compound 8 was obtained under a variety of reaction
conditions. It was identified as diethyl (3S,4R)-3,5-O-
benzylidene-4-hydroxy-(E)-1-pentene-1-phosphonate from
the following data, supported by DEPT, COSY, HSQC,
We have established completely stereoselective and
highly efficient routes to the b C-glycosyl analogues of
N-acetyl mannosamine 1-O-phosphate and N-acetyl
glucosamine 1-O-phosphate, starting from well-known
and readily prepared derivatives of the inexpensive
and NOE experiments: ½aꢀ )54.5° (c 1.05, CH2Cl2); 1H
D
NMR (300 MHz, CDCl3): d 1.33 (dt, 6H, J ¼ 0:8 and 7.1),
3.62 (dddd, 1H, J ¼ 10:1, 4.1, 5.0, and 8.8, H-4), 3.68 (dd,
1H, J ¼ 10:1 and 10.1, H-5), 4.00–4.14 (m, 4H), 4.23 (dd,
1H, J ¼ 8:8, 3.2, and 2.0, H-3), 4.32 (dd, 1H, J ¼ 10:1 and
4.1, H-5), 5.44 (d, 1H, J ¼ 5:0, OH), 5.58 (s, 1H), 6.11
(ddd, 1H, J ¼ 21:6, 17.2, and 2.0, H-1), 7.26 (ddd, 1H,
J ¼ 3:2, 17.2, and 23.3, H-2), 7.34–7.57 (m, 5H); 13C
NMR (75.5 MHz, CDCl3) d 16.64 (d, J ¼ 6:5), 62.44 (d,
J ¼ 5:6), 62.46 (d, J ¼ 5:5), 65.36 (d, J ¼ 1:9), 72.00 (s),
81.36 (d, J ¼ 20:5), 101.10 (s), 116.36 (d, J ¼ 188:9),
149.99 (d, J ¼ 6:7); 31P NMR (121.5 MHz, CDCl3): d
20.41; ESI-MS (m/z): 343.34.
D
-GlcNAc. These are not only useful as structural
components of potential glycosyltransferase inhibitors,
but they may also serve as precursors to more elaborate
2-amino b-C-glycosides via Horner–Emmons reaction
of the phosphonate groups.
Supplementary data. Experimental procedures and
spectroscopic data for compounds 1, 2, 4, 10a, 11, 13,
and 14. The supplementary data are available online
with the paper in ScienceDirect.
12. Giannis, A.; Munster, P.; Sandhoff, K.; Steglich, W.
Tetrahedron 1988, 44, 7177–7180.
13. Compound 1 was obtained as a glassy solid. Its config-
uration was confirmed by NOE correlations between
0 0
0 0 0 0
NH–H4 , H1–H4 , H1 –H2 , and H1 –H3 .
H
Acknowledgements
This work was supported by a Discovery Grant from the
Natural Sciences and Engineering Research Council of
Canada (NSERC). We also thank Dr. Kirk Marat for
his assistance in obtaining NMR spectra.
References and notes
14. (a) Giannis, A.; Henk, T.; Sandhoff, K. EP 0385287 A2, 5
September 1990 (b) Werner, R. M.; Williams, L. M.;
Davis, J. T. Tetrahedron Lett. 1998, 39, 9135–9138.
15. Petrusova, M.; BeMiller, J. N.; Krihova, A.; Petrus, L.
Carbohydr. Res. 1996, 295, 57–67.
1. (a) Compain, P.; Martin, O. R. Bioorg. Med. Chem. 2001,
9, 3077–3092; (b) El Ashry, E. S. H.; Rashed, N.; Shobier,
A. H. S. Pharmazie 2000, 55, 251–262.
2. (a) Cipolla, L.; Lay, L.; Nicotra, F.; Panza, L.; Russo, G.
J. Chem. Soc., Chem. Commun. 1995, 1993–1994; (b)
Casero, F.; Cipolla, L.; Lay, L.; Nicotra, F.; Panza, L.;
Russo, G. J. Org. Chem. 1996, 61, 3428–3432; (c) Cipolla,
L.; Lay, L.; Nicotra, F. J. Org. Chem. 1997, 62, 6678–
6681; (d) Gaurat, O.; Xie, J.; Valery, J.-M. Tetrahedron
Lett. 2000, 41, 1187–1189; z(e) Schafer, A.; Thiem, J. J.
Org. Chem. 2000, 65, 24–29; (f) Grugier, J.; Xie, J.;
Duarte, I.; Valery, J.-M. J. Org. Chem. 2000, 65, 979–984.
3. (a) Roe, B. A.; Boojamra, C. G.; Griggs, J. L.; Bertozzi, C.
R. J. Org. Chem. 1996, 61, 6442–6445; (b) Cui, J.; Horton,
D. Carbohydr. Res. 1998, 309, 319–330.
ꢀ
16. (a) Pravdic, N.; Fletcher, H. G., Jr.; Carbohydr. Res. 1971,
19, 353–364; (b) Molina, A.; Czernecki, S.; Xie, J.
Tetrahedron Lett. 1998, 39, 7507–7510.
17. Compound 14 was obtained as white needles. Only one
isomer of 14 was observed. An NOE experiment showed
0
correlations between H1–NH, H1–H2 , and H1–H3 .
0
4. (a) Burhart, F.; Hoffmann, M.; Kessler, H. Angew. Chem.,
Int. Ed. 1997, 36, 1191–1192; (b) Hoffmann, M.; Burkhart,
F.; Hessler, G.; Kessler, H. Helv. Chim. Acta 1996, 79,
1519–1532; (c) Burkhart, F.; Kessler, H. Tetrahedron Lett.
1998, 39, 255–256.
5. Fuchss, T.; Schmidt, R. R. Synthesis 1998, 753–758.
6. Pachamuthu, K.; Gupta, A.; Das, J.; Schmidt, R. R.;
Vankar, Y. D. Eur. J. Org. Chem. 2002, 1479–1483.
7. Yang, G.; Franck, R. W.; Bittman, R.; Samadder, P.;
Arthur, G. Org. Lett. 2001, 3, 197–200.
18. (a) Borodkin, V. S.; Milne, F. C.; Ferguson, M. A. J.;
Nikolaev, A. V. Tetrahedron Lett. 2002, 43, 7821–7825; (b)
Vidil, C.; Morere, A.; Garcia, M.; Barragan, V.; Hamda-
oui, B.; Rochefort, H.; Montero, J.-L. Eur. J. Org. Chem.
1999, 447–450; (c) Cipolla, L.; La Ferla, B.; Nicotra, F.;
Panza, L. Tetrahedron Lett. 1997, 38, 5567–5568.