10610
D. Shobha et al. / Tetrahedron 65 (2009) 10608–10611
Table 3
Community Scheme and World Premier International Research
Center (WPI) Initiative on Materials Nanoarchitectonics, MEXT,
Japan.
Mesoporous aluminosilicate-AlKIT-5(10) catalyzed synthesis of dihydropyr-
imidinones and thio derivatives
Entry
Aldehyde
X
R1
R2
Product
Time
(h)
Yield
(%)
1
2
3
4
5
6
7
8
C6H5CHO
O
O
O
O
O
O
O
O
O
O
O
O
Me
Me
Me
Me
Me
Me
Me
Me
Me
Me
Me
Me
OEt
OEt
OEt
OEt
OEt
OEt
OEt
OEt
OEt
OEt
OEt
OEt
4a
4b
4c
4d
4e
4f
4g
4h
4i
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
96
96
93
86
88
89
84
88
83
82
88
92
References and notes
o-NO2C6H4CHO
p-NO2C6H4CHO
m-NO2C6H4CHO
p-ClC6H4CHO
p-CH3OC6H4CHO
m-(C6H5O)C6H4CHO
2-OHC6H4CHO
3-OHC6H4CHO
5-Cl-2-OHC6H4CHO
C6H4CH]CHCHO
2-Thiophene
1. For reviews, see: (a) Kappe, C. O. Tetrahedron 1993, 49, 6937; (b) Kappe, C. O.
Acc. Chem. Res. 2000, 33, 879; (c) Dondoni, A.; Massi, A. Acc. Chem. Res. 2006, 39,
451; (d) Kappe, C. O. In Multicomponent Reactions; Zhu, J., Bienayme´, H., Eds.;
Wiley-VCH: Weinheim, Germany, 2005; p 95.
2. Kappe, C. O.; Kumar, D.; Varma, R. S. Synthesis 1999, 1799 and references cited
there in.
3. (a) Kappe, C. O. Eur. J. Med. Chem. 2000, 35, 1043; (b) Kappe, C. O.; Shishkin, O.
V.; Uray, G.; Verdino, P. Tetrahedron 2000, 56, 1859.
4. Snider, B. B.; Shi, Z. J. J. Org. Chem. 1993, 58, 3828.
9
10
11
12
4j
4k
4l
5. Biginelli, P. Gazz. Chim. Ital. 1893, 23, 360.
carboxaldehyde
Furfuraldehyde
C6H5CHO
C6H5CHO
C6H5CHO
o-NO2C6H4CHO
p-NO2C6H4CHO
m-NO2C6H4CHO
p-ClC6H4CHO
p-CH3OC6H4CHO
m-(C6H5O)C6H4CHO
2-OHC6H4CHO
3-OHC6H4CHO
5-Cl-2-OHC6H4CHO
C6H4CH]CHCHO
2-Thiophene
6. (a) Folkers, K.; Harwood, H. J.; Johnson, T. B. J. Am. Chem. Soc. 1932, 54, 3751; (b)
Wipf, P.; Cunningham, A. Tetrahedron Lett. 1995, 36, 7819; (c) Folkers, K.;
Johnson, T. B. J. Am. Chem. Soc. 1934, 1180.
7. (a) O’Reilly, B. C.; Atwal, K. S. Heterocycles 1987, 26, 1185; (b) Atwal, K. S.;
O’Reilley, B. C.; Gougoutas, J. Z.; Malley, M. F. Heterocycles 1987, 26, 1189; (c)
Shutalev, A. D.; Kuksa, V. A. Khim. Geterotsikl. Soedin. 1997, 105; (d) Shutalev, A.
D.; Kishko, E. A.; Sivova, N.; Kuznetsov, A. Y. Molecules 1998, 3, 100.
8. Choudhary, V. R.; Tillu, V. H.; Narkhede, V. S.; Borate, H. B.; Wakharkar, R. D.
Catal. Commun. 2003, 4, 449.
9. Shao, G. Q. Chin. J. Synth. Chem. 2004, 12, 325.
10. Manjula, A.; Rao, B. V.; Neelakantan, P. Synth. Commun. 2004, 34, 2665.
11. Jenner, G. Tetrahedron Lett. 2004, 45, 6195.
12. Gangadasu, B.; Palaniappan, S.; Rao, V. J. Synlett 2004, 1285.
13. Russowsky, D.; Lopes, F. A.; da Silva, V. S. S.; Canto, K. F. S.; D’Oca, M. G. M.;
Godoi, M. N. J. Braz. Chem. Soc. 2004, 15, 165.
14. Tu, S.; Fang, F.; Zhu, S.; Li, T.; Zhang, X.; Zhuang, Q. J. Heterocycl. Chem. 2004,
41, 253.
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
O
O
O
S
S
S
S
S
S
S
S
S
S
S
S
Me
Me
Ph
OEt
OMe
OEt
OEt
OEt
OEt
OEt
OEt
OEt
OEt
OEt
OEt
OEt
OEt
OEt
4m
4n
4o
4p
4q
4r
3.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
92
86
90
91
91
88
80
88
82
84
84
82
82
86
90
Me
Me
Me
Me
Me
Me
Me
Me
Me
Me
Me
Me
4s
4t
4u
4v
4w
4x
4y
4z
4
15. Shaabani, A.; Bazgir, A.; Bijanzadeh, H. R. Mol. Divers. 2004, 8, 141.
16. Tu, S.; Fang, F.; Zhu, S.; Li, T.; Zhang, X.; Zhuang, Q. Synlett 2004, 537.
17. Kappe, C. O.; Stadler, A. Org. React. 2004, 63, 1.
18. Yadav, J. S.; Reddy, B. V. S.; Sridhar, P.; Reddy, J. S. S.; Nagaiah, K.; Lingaiah, N.;
Saiprasad, P. S. Eur. J. Org. Chem. 2004, 552.
carboxaldehyde
Furfuraldehyde
C6H5CHO
28
29
30
S
S
S
Me
Me
Ph
OEt
OMe
OEt
4
4
4
4.0
4.0
4.0
90
82
88
C6H5CHO
19. (a) Gupta, R.; Gupta, A. K.; Paul, S.; Kachroo, P. L. Indian J. Chem. 1995, 34B, 151;
(b) Yadav, J. S.; Subba Reddy, B. V.; Jagan Reddy, E.; Ramalingam, T. J. Chem. Res.,
Synop. 2000, 354.
20. Adharvana Chari, M.; Syamasundar, K. J. Mol. Catal. A: Chem. 2004, 221, 137 and
the references cited therein.
and meta-phenoxy benzaldehyde also worked well to synthesize
multifunctionalised DHPMs using AlKIT-5(10).
It is also important to note that the workup of the reaction
mixture is very simple. The catalyst can be filtered out easily and
the solvent was evaporated. Recycling experiments were conducted
to find out the stability of the catalyst after the reaction. The cat-
alyst was easily separated by centrifugation and reused after acti-
vation at 500 ꢀC for 3–4 h. The efficiency of the recovered catalyst
was verified with the Biginelli reaction (entry 1). Using the fresh
catalyst, the yield of product (4a) was 96%, while the recovered
catalyst in the three subsequent recycling experiments gave the
yields of 95, 92 and 90%, respectively. These results reveal that the
catalyst can be recycled several times without losing much activity.
In summary, we have developed a simple, convenient and
effective method for the synthesis of DPHMs and their derivatives
21. (a) Amini, M. M.; Shaabani, A.; Bazgir, A. Catal. Commun. 2006, 7, 843; (b) Chen,
W.; Qin, S.; Jin, J. Catal. Commun. 2007, 8, 123; (c) Legeay, J. C.; Vanden Eynde, J.
J.; Bazureau, J. P. Tetrahedron Lett. 2007, 48, 1063; (d) Kumar, A.; Maurya, R. A.
Tetrahedron Lett. 2007, 48, 4569.
22. Kappe, C. O. J. Org. Chem. 1997, 62, 7201.
23. (a) Uraguchi, D.; Terada, M. J. Am. Chem. Soc. 2004, 126, 5356; (b) Akiyama, T.;
Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem., Int. Ed. 2004, 43, 1566.
24. Huang, Y.; Yang, F.; Zhu, C. J. Am. Chem. Soc. 2005, 127, 16386.
25. Huang, Y.; Yang, F.; Zhu, C. J. Am. Chem. Soc. 2006, 128, 14802.
26. Breton, G. W. J. Org. Chem. 1997, 62, 8952.
27. Adharvana Chari, M.; Syamasundar, K. Catal. Commun. 2005, 6, 67.
28. Gupta, R.; Paul, S.; Gupta, R. J. Mol. Catal. A: Chem. 2007, 266, 50.
29. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature 1992,
359, 710.
30. Mahdavinia, G. H.; Hamid, S. Chin. Chem. Lett. 2008, 19, 1435.
31. Hemant, S.; Chandak, E.; Nitin, P.; Lad, E.; Pravin, P. Catal. Lett. 2009, 131, 469.
32. Corma, A. Chem. Rev. 1997, 97, 2373.
using substituted aldehydes, b-ketoester, urea or thiourea at reflux
temperature using 3D mesoporous aluminosilicate catalyst with
cage type pore. This method is applicable to a wide range of sub-
33. Hartmann, M.; Vinu, A. Langmuir 2002, 18, 8010.
34. Vinu, A.; Hossain, K. Z.; Kumar, G. S.; Ariga, K. Carbon 2006, 44, 530.
35. Vinu, A.; Devassy, B. M.; Halligudi, S. B.; Bohlmann, W.; Hartmann, M. Appl.
Catal. A: Gen. 2005, 281, 207.
36. Kleitz, F.; Liu, D.; Anilkumar, G. M.; Park, I.-S.; Solovyov, L. A.; Shmakov, A. N.;
Ryoo, R. J. Phys. Chem. B 2003, 107, 14296.
37. Vinu, A.; Murugesan, V.; Hartmann, M. J. Phys. Chem. B 2004, 108, 7323.
38. Vinu, A.; Krithiga, T.; Murugesan, V.; Hartmann, M. Adv. Mater. 2004, 16, 1817.
39. Srinivasu, P.; Alam, S.; Balasubramanian, V. V.; Velmathi, S.; Sawant, D. P.;
Bohlmann, W.; Mirajkar, S. P.; Ariga, K.; Halligudi, S. B.; Vinu, A. Adv. Funct.
Mater. 2008, 18, 640.
40. Balasubramanian, V. V.; Srinivasu, P.; Anand, C.; Pal, R. R.; Ariga, K.; Velmathi,
S.; Alam, S.; Vinu, A. Micropor. Mesopor. Mater. 2008, 114, 303.
41. Dubey, A.; Mishra, B. G.; Sachdev, D.; Sowmiya, M. React. Kinet. Catal. Lett. 2008,
93, 149.
strates including aromatic, aliphatic, a,b-unsaturated and hetero-
cyclic aldehydes. The catalyst gave a high isolated yield of the
DHPMs in a shorter reaction time at reflux temperature and can be
recycled several times. The mesoporous AlKIT-5 catalysts are
promising heterogeneous catalysts in all circumstances where the
aluminosilicate matrix is highly stable and we strongly hope that
this catalyst could also be used for other acid catalyzed organic
transformation and help to replace the existing toxic, corrosive and
expensive homogenous catalysts.
42. Experimental section: all chemicals and solvents were obtained from Aldrich
and used without further purification. Column chromatographic separations
were carried out on silica gel 100–200 mesh size. The 1H NMR spectra of
samples were recorded on a JEOL 300 MHz NMR spectrometer using TMS as an
internal standard in CDCl3. Mass spectra were recorded on a MALDI-MS. FT-IR
Acknowledgement
This work was financially supported by the Ministry of Educa-
tion, Culture, Sports, Science and Technology (MEXT) under the
Strategic Program for Building an Asian Science and Technology
spectra of all the final products were recorded on
a Perkin Elmer 100
instrument by averaging 50 scans with a resolution of 2 cmꢁ1 measuring in
absorbance mode by using the KBr self-supported pellet technique.