Journal of the American Chemical Society
Page 4 of 6
graphical journey of innovative organic architectures that
impact of our deaminative alkylation of unactivated ole-
fins, offering a counterintuitive new approach to forge
sp3–sp3 bonds while expanding our ever-growing arsenal
of olefin functionalization and deaminative events.
1
2
3
4
5
6
7
8
have improved our lives. J. Chem. Educ. 2010, 87, 1348.
(4) For selected reviews on catalytic C−N bond-cleavage: (a)
Kong, D.; Moon, P. J.; Lundgren, R. J. Radical coupling from
alkyl amines. Nat. Cat. 2019, 2, 473. (b) Ouyang, K.; Hao,
W.; Zhang, W. − X.; Xi, Z. Transition metal catalyzed cleav-
age of C-N single bonds. Chem. Rev. 2015, 115, 12045.
(5) (a) Plunkett, S.; Basch, C. H.; Santana, S. O.; Watson, M. P.
Harnessing alkylpyridinium salts as electrophiles in deami-
native alkylalkyl cross couplings. J. Am. Chem. Soc. 2019,
141, 2257. (b) Hoerrner, M. E.; Baker, K. M.; Basch, C. H.;
Bampo, E. M.; Watson, M. P. Deaminative arylation of
amino-acid derived pyridinium salts. Org. Lett. 2019, 21,
7356. (c) Basch, C. H.; Liao, J.; Xu, J.; Piane, J. J.; Watson,
M. P. Harnessing alkyl amines as electrophiles for nickel-cat-
alyzed cross-couplings via C-N bond activation. J. Am. Chem.
Soc. 2017, 139, 5313
In summary, we have developed a catalytic deaminative
alkylation of unactivated olefins that operates under mild
conditions and is characterized by its wide substrate scope
and exquisite site-selectivity profile, even in the context
of ethylene valorization or late-stage functionalization.
This new platform offers new vistas in both olefin func-
tionalization and deamination events and a complemen-
tary activation mode to existing sp3–sp3 bond-forming re-
actions. Further studies into the mechanism and the ex-
tension to related transformations are currently ongoing.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(6) (a) Martin-Montero, R.; Yatham, V. R.; Yin, H.; Davies, J.;
Martin, R. Ni-catalyzed reductive deaminative arylation at
sp3 carbon centers. Org. Lett. 2019, 21, 2947. (b) Liao, J.;
Basch, C. H.; Hoerrner, M. E.; Talley, M. R.; Boscoe, B. P.;
Tucker, J. W.; Garnsey, M. R.; Watson, M. P. Deaminative
reductive cross-electrophile couplings of alkylpyridinium
salts and aryl bromides. Org. Lett. 2019, 21, 2941. (c) Yue,
H.; Zhu, C.; Shen, L.; Geng, Q.; Hock, K. J.; Yuan, T.;
Cavallo, L.; Rueping, M. Nickel-catalyzed C-N bond activa-
tion: activated primary amines as alkylating reagents in re-
ductive crosscoupling. Chem. Sci. 2019, 10, 4430. (d) Yi, J.;
Badir, S. O.; Kammer, L. M.; Ribagorda, M.; Molander, G.
A. Deaminative reductive arylation enabled by Nickel/Pho-
toredox dual catalysis. Org. Lett. 2019, 21, 3346. (e) Ni, S.;
Li, C.; Han, J.; Mao, Y.; Pan, Y. Ni-catalyzed deamination
cross-electrophile coupling of Katritzky salts with halides via
C-N bond activation. Sci. Adv. 2019, 5, 9516.
(7) For selected references: (a) Wu, J.; Grant, P. S.; Li, X.; No-
ble, A.; Aggarwal, V. K. Catalyst-free deaminative function-
alizations of primary amines by photoinduced single-electron
transfer. Angew. Chem. Int. Ed., 2019, 58, 5697. (b) Jiang,
X.; Zhang, M. M.; Xiong, W.; Lu, L. Q.; Xiao, W. J. Deami-
native (Carbonylative) alkyl-heck-type reactions enabled by
photocatalytic C−N bond activation. Angew. Chem., Int. Ed.
2019, 58, 2402. (c) Klauck, F. J. R.; Yoon, H.; James, M. J.;
Lautens, M.; Glorius, F. Visible-light-mediated deaminative
three-component dicarbofunctionalization of styrenes with
benzylic radicals. ACS Catal. 2019, 9, 236. (d) Ociepa, M.;
Turkowska, J.; Gryko, D. Redox-activated amines in C(sp3)-
C(sp) and C(sp3)-C(sp3) bond formation enabled by metal-
free photoredox catalysis. ACS Catal. 2018, 8, 11362.
(8) For selected reviews on sp3-sp3 coupling reactions: (a) Mo-
lander, G.; Milligan, J. A.; Phelan, J. P.; Badir, S. O. Recent
advances in alkyl carbon-carbon bond formation by
Nickel/Photoredox cross-coupling. Angew. Chem. Int.
Ed., 2019, 58, 6152. (b) Pitre, S. P.; Weires, N. A.; Overman,
L. E. Forging C(sp3)–C(sp3) bonds with carbon-centered
radicals in the synthesis of complex molecules. J. Am. Chem.
Soc., 2019, 141, 2800. (c) Choi, J.; Fu, G. C. Transition
metal-catalyzed alkyl-alkyl bond formation: Another dimen-
sion in cross-coupling chemistry. Science 2017, 356, 152. (d)
Jana, R.; Pathak, T. P.;Sigman, M. S. Advances in tran-
sition metal (Pd, Ni, Fe)-catalyzed cross-coupling reac-
tions using alkyl-organometallics as reaction part-
ners. Chem. Rev. 2011, 111, 1417. (e) Hu, X. Nickel-cata-
lyzed cross-coupling of non-activated alkyl halides: a mech-
anistic perspective. Chem. Sci. 2011, 2, 1867.
ASSOCIATED CONTENT
Supporting Information. Experimental procedures, crys-
tallographic data and spectral data. This material is available
AUTHOR INFORMATION
Corresponding Author
Funding Sources
No competing financial interests have been declared.
ACKNOWLEDGMENT
We thank ICIQ and FEDER/MICIU –AEI/PGC2018-
096839-B-100 for financial support. S.–Z. S. sincerely thank
MINECO for a predoctoral fellowship.
REFERENCES
(1) Selected references: (a) Dhungana, R. K.; Kc, S.; Basnet, P.;
Giri, R. Transition metal-catalyzed dicarbofunctionalization
of unactivated olefins. Chem. Rec. 2018, 1314. (b) Dong, Z.;
Ren, Z.; Thompson, S. J.; Xu, Y.; Dong, G. Transition-metal-
catalyzed C–H alkylation using alkenes. Chem. Rev. 2017,
117, 9333. (c) Crossley, S. W. M.; Martinez, R. M.; Obradors,
C.; Shenvi, R. A. Mn, Fe, and Co-catalyzed radical hydro-
functionalization of olefins. Chem. Rev. 2016, 116, 8912. (d)
The asymmetric Heck and related reactions. D. Mc Cartney,
P. J. Guiry, Chem. Soc. Rev. 2011, 40, 5122.
(2) Nguyen, K. D.; Park, B. Y.; Luong, T.; Sato, H.; Garza, V.
J.; Krische, M. J. Metal-Catalyzed Reductive Coupling of
Olefin-Derived Nucleophiles: Reinventing Carbonyl Addi-
tion Science 2016, 354, 300.
(3) (a) Blakemore, D. C.; Castro, L.; Churcher, I.; Rees, D. C.;
Thomas, A. W.; Wilson, D. M.; Wood, A. Organic synthesis
provides opportunities to transform drug Discovery. Nat.
Chem. 2018, 10, 383. (b) Mayol-Llinas, J.; Nelson, A.;
Farnaby, W.; Ayscough, A. Assessing molecular scaffolds
for CNS drug discovery. Drug Discovery Today 2017, 22,
965. (c) Marciano, D. P.; Chang, M. R.; Corzo, C. A.; Lam,
V. Q.; Pascal, B. D.; Griffin, P. R. The therapeutic potential
of nuclear receptor modulators for the treatment of metabolic
disorders: PPARγ, RORs and Rev-erbs. Cell Metab. 2014, 19,
193. (d) McGrath, N. A.; Brichacek, M.; Njardarson, J. T. A
(9) For selected recent references: (a) Shen, Y.; Gu, Y.; Martin,
R. sp3 C–H arylation and alkylation enabled by the synergy
of triplet excited ketones and nickel catalysts. J. Am. Chem.
ACS Paragon Plus Environment