for the emission properties at 77 K, it remains to be said that
7 M. Hissler, J. E. McGarrah, W. B. Connick, D. K. Geiger, S. D.
Cummings and R. Eisenberg, Coord. Chem. Rev., 2000, 208, 115.
8 O. Johansson, H. Wolpher, M. Borgstrom, L. Hammarstrom, J.
Bergquist, L. C. Sun and B. Akermark, Chem. Commun., 2004, 194.
9 P. W. Du, J. Schneider, P. Jarosz and R. Eisenberg, J. Am. Chem. Soc.,
2006, 128, 7726.
10 A. Juris, F. Barigelletti, V. Balzani, P. Belser and A. von Zelewsky, Inorg.
Chem., 1985, 24, 202.
11 F. Barigelletti, A. Juris, V. Balzani, P. Belser and A. von Zelewsky, Inorg.
Chem., 1987, 26, 4115.
3
the lifetime values are typical of a MLCT emission, s = 4.6–
5.2 ls, Table 3. This apparent discrepancy might be the result of a
complex interplay of excited states, an occurrence sometimes met
for closely lying LC and MLCT levels.34–38
Conclusions
Substituted 3,3ꢀ-biisoquinolines have virtually never been used
in coordination photochemistry. In the present study we have
made and studied transition-metal complexes of various 8,8ꢀ-
disubstituted-3,3ꢀ-biisoquinolines, the two substituents attached
on the 8 and 8ꢀ positions of the ligand being Cl atoms, p-anisyl
groups or p-(4ꢀ-methoxy-1,1ꢀ-biphenyl) substituents. The general
shape of the chelating unit is such that, although its coordination
site is endotopic, i.e. directed towards the concave part of the
molecule, it does not interfere from a steric viewpoint with the
complexed metal and its close surrounding, or only very weakly.
The complexes containing the Fe(II), Ru(II) or Re(I) centres and
these endotopic, sterically non-hindering, U-shaped ligands have
been characterized from a photophysical viewpoint. For all of the
complexes the lowest-energy absorption band is of 1MLCT nature.
The emission properties of the Ru(II) and Re(I) complexes show
some peculiar features: the emission of the Ru(II) complexes is of
12 M. Kato, K. Sasano, C. Kosuge, M. Yamazaki, S. Yano and M. Kimura,
Inorg. Chem., 1996, 35, 116.
13 M. I. Azocar, L. Mikelsons, G. Ferraudi, S. Moya, J. Guerrero, P.
Aguirre and C. Martinez, Organometallics, 2004, 23, 5967.
14 A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser and A. von
Zelewsky, Coord. Chem. Rev., 1988, 84, 85.
15 P. Belser, A. von Zelewsky, A. Juris, F. Barigelletti, A. Tucci and V.
Balzani, Chem. Phys. Lett., 1982, 89, 101.
16 F. Durola, J. P. Sauvage and O. S. Wenger, Chem. Commun., 2006,
171.
17 F. Durola, D. Hanss, P. Roesel, J. P. Sauvage and O. S. Wenger,
Eur. J. Org. Chem., 2007, 125.
18 F. Durola, L. Russo, J.-P. Sauvage, K. Rissanen and O. S. Wenger,
Chem.–Eur. J., 2007, 13, 8749.
19 J. N. Demas and G. A. Crosby, J. Phys. Chem., 1971, 75, 991.
20 D. F. Eaton, Pure Appl. Chem., 1988, 60, 1107.
21 K. Nakamaru, Bull. Chem. Soc. Jpn., 1982, 55, 2967.
22 H. Fukumi and H. Kurihara, Heterocycles, 1978, 9, 1197.
23 D. Collado, E. Perez-Inestrosa and R. Suau, J. Org. Chem., 2003, 68,
3574.
24 N. Kang, A. R. Hlil and A. S. Hay, J. Polym. Sci., Part A: Polym.
3
mixed MLCT/3LC character both at room temperature and at
Chem., 2004, 42, 5745.
77 K, whereas the emission of the Re(I) complexes appears to be
of 3MLCT character at room temperature and of 3LC character at
77 K.
25 P. S. Braterman, J. I. Song and R. D. Peacock, Inorg. Chem., 1992, 31,
555.
26 C. Hamann, A. Von Zelewsky, A. Neels and H. Stoeckli-Evans, Dalton
Trans., 2004, 402.
27 K. S. Schanze, D. B. Macqueen, T. A. Perkins and L. A. Cabana, Coord.
Chem. Rev., 1993, 122, 63.
28 D. A. Bardwell, F. Barigelletti, R. L. Cleary, L. Flamigni, M. Guardigli,
J. C. Jeffery and M. D. Ward, Inorg. Chem., 1995, 34, 2438.
29 L. A. Worl, R. Duesing, P. Y. Chen, L. Dellaciana and T. J. Meyer,
J. Chem. Soc., Dalton Trans., 1991, 849.
30 M. Montalti, A. Credi, L. Prodi and M. T. Gandolfi, Handbook of
Photochemistry, Taylor and Francis, Boca Raton, 2006.
31 A. Gilbert and J. Baggot, Essentials of Molecular Photochemistry,
Blackwell, London, 1991.
Acknowledgements
We thank CNR of Italy (PM P04.010) and CNRS of France. F. D.
thanks the CNRS and the Re´gion Alsace for a fellowship and
O. W. acknowledges a fellowship from the Swiss National Science
Foundation.
32 Y. Kawanishi, N. Kitamura and S. Tazuke, Inorg. Chem., 1989, 28,
References
2968.
33 G. H. Allen, R. P. White, D. P. Rillema and T. J. Meyer, J. Am. Chem.
Soc., 1984, 106, 2613.
34 D. S. Tyson and F. N. Castellano, J. Phys. Chem. A, 1999, 103, 10955.
35 N. D. McClenaghan, F. Barigelletti, B. Maubert and S. Campagna,
Chem. Commun., 2002, 602.
36 A. F. Morales, G. Accorsi, N. Armaroli, F. Barigelletti, S. J. A. Pope
and M. D. Ward, Inorg. Chem., 2002, 41, 6711.
37 X. Y. Wang, A. Del Guerzo and R. H. Schmehl, J. Photochem.
Photobiol., C, 2004, 5, 55.
1 V. Balzani and F. Scandola, Supramolecular Photochemistry, Horwood,
Chichester, 1991, and references therein.
2 V. Balzani, G. Bergamini, F. Marchioni and P. Ceroni, Coord. Chem.
Rev., 2006, 250, 1254.
3 D. G. Cuttell, S. M. Kuang, P. E. Fanwick, D. R. McMillin and R. A.
Walton, J. Am. Chem. Soc., 2002, 124, 6.
4 M. H. Wilson, L. P. Ledwaba, J. S. Field and D. R. McMillin, Dalton
Trans., 2005, 2754.
5 J. H. Alstrum-Acevedo, M. K. Brennaman and T. J. Meyer, Inorg.
Chem., 2005, 44, 6802.
6 A. Hagfeldt and M. Graetzel, Acc. Chem. Res., 2000, 33, 269.
38 N. D. McClenaghan, Y. Leydet, B. Maubert, M. T. Indelli and S.
Campagna, Coord. Chem. Rev., 2005, 249, 1336.
498 | Dalton Trans., 2008, 491–498
This journal is
The Royal Society of Chemistry 2008
©