1868
Y.-J. Li et al. / Tetrahedron Letters 45 (2004) 1865–1868
I.; Meyer, C.; Cossy, J. Tetrahedron Lett. 2001, 42, 5215–
5218.
financial support. Partial support of the Mass spec-
trometer facility provided by National Chung-Hsing
University and the support of X-ray facility by National
Taiwan University are also acknowledged.
4. For reviews of [2,3]-Wittig rearrangement, see: (a) Nakai,
T.; Mikami, K. Chem. Rev. 1986, 86, 885–902; (b)
Marshall, J. A. In Comprehensive Organic Synthesis;
Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991;
Vol. 3, pp 975–1014; (c) Marshall, J. A. In Comprehensive
Organic Synthesis; Trost, B. M., Fleming, I., Eds.;
Pergamon: Oxford, 1991; Vol. 6, pp 873–908; (d) Nakai,
T.; Mikami, K. Org. React. 1994, 46, 105–209; (e)
Kallmerten, J. In Houben-Weyl, Stereoselective Synthesis;
Helmchen, G., Hoffmann, R. W., Mulzer, J., Schaumann,
E., Eds.; Thieme: Stuttgart, 1995; Vol. E 21d, pp 3757–
3809.
5. (a) Troostwijk, C. B.; Kellogg, R. M. J. Chem. Soc., Chem.
Commun. 1977, 932–933; (b) Seebach, D.; Eberle, M.
Synthesis 1986, 37–40.
6. Barluenga, J.; Aznar, F.; Liz, R.; Bayod, M. J. Chem.
Soc., Chem. Commun. 1984, 1427–1428.
7. The crystal structure of compound anti-6e has been
deposited at the Cambridge Crystallographic Data Centre
as CCDC 212545.
8. Williard, P. G.; Tata, J. R.; Schlessinger, R. H.; Adams, A.
D.; Iwanowicz, E. J. J. Am. Chem. Soc. 1988, 110, 7901.
9. The syn/anti configuration of 6g was assigned via the
correlation of 1H NMR signals with syn-6e (Ha at
5.91 ppm) and anti-6e (Ha at 5.55 ppm). syn-6g has a Ha
signal at 5.96 ppm, whereas anti-6g has a Ha signal at
5.54 ppm.
10. (a) Wittig, G.; Lohmann, L. Liebigs Ann. Chem. 1942, 550,
260–268; (b) Schollkopf, U. Angew. Chem., Int. Ed. 1970,
9, 763–773; (c) Marshall, J. A. In Comprehensive Organic
Synthesis; Pattenden, G., Ed.; Pergamon: London, 1991;
Vol. 3, pp 975–1014; (d) Kallmerten, J. In Houben-Weyl,
Stereoselective Synthesis; Helmchen, G., Hoffmann, R.
W., Mulzer, J., Schaumann, E., Eds.; Thieme: Stuttgart,
1995; Vol. E 21d, pp 3810–3832; (e) Tomooka, K.;
Yamamoto, H.; Nakai, T. Liebig Ann. Recl. 1997, 1275–
1281; (f) Kitagawa, O.; Momose, S.-I.; Yamada, Y.; Shiro,
M.; Taguchi, T. Tetrahedron Lett. 2001, 42, 4865–4868.
11. Stereochemistries of compounds anti-6j and syn-6j were
assigned by 2D-NOESY NMR experiments.
12. Compounds 10a–c were obtained via the LiAlH4 reduc-
tion of the coresponding a,b-unsaturated ester or alde-
hyde. For the synthesis of the a,b-unsaturated ester or
aldehyde, see: (a) Reizelman, A.; Scheren, M.; Nefkens, G.
H. L.; Zwanenburg, B. Synthesis 2000, 1944–1951; (b)
Hojo, M.; Masuda, R.; Sakaguchi, S.; Takagawa, M.
Synthesis 1986, 1016–1017; (c) Geyer, B. P.; Mortimer, R.
H. Shell Devel. Co. U.S. Patent 2,514,156, 1946.
13. The diastereomeric ratio of unseparable syn-13a and anti-
13a was determined by 1H NMR integration. The syn/anti
configuration was assigned via the correlation of 1H NMR
signals with syn-13c and anti-13c.
References and notes
1. Synthesis of 4-pyrrolidin-1-yl-5H-furan-2-ones system,
see: (a) Farina, F.; Martin, M. V.; Sanchez, F.; Maestro,
M. C.; Martin, M. R. Synthesis 1983, 397–398; (b)
Shandala, M. Y.; Ayoub, M. T.; Mohammad, M. J. J.
Heterocycl. Chem. 1984, 21, 1753–1754; (c) Schlessinger,
R. H.; Iwanowicz, E. J. Tetrahedron Lett. 1988, 29, 1489–
1492; (d) Momose, T.; Toyooka, N.; Nishi, T.; Takeuchi,
Y. Heterocycles 1988, 27, 1907–1923; (e) Schlessinger, R.
H.; Mjalli, A. M. M.; Adams, A. D.; Springer, J. P.;
Hoogsteen, K. J. Org. Chem. 1992, 57, 2992–2993; (f)
Schlessinger, R. H.; Pettus, T. R. R.; Springer, J. P.;
Hoogsteen, K. J. Org. Chem. 1994, 59, 3246–3247; (g)
Wang, J.; Jiang, X.; Chen, M.; Ge, Z.; Hu, Y.; Hu, H.
J. Chem. Soc., Perkin Trans. 1 2000, 66–71.
2. Transformation of 4-pyrrolidin-1-yl-5H-furan-2-ones to
tetronic acids or unsaturated c-lactones, see: (a) Farina,
F.; Martin, M. V.; Martin-Aranda, R. M.; Guerenu, A.
M. Synth. Commun. 1993, 23, 459–472; (b) Nishide, K.;
Aramata, A.; Kamanaka, T.; Inoue, T.; Node, M.
Tetrahedron 1994, 50, 8337–8346; (c) Dankwardt, S. M.;
Dankwardt, J. W.; Schlessinger, R. H. Tetrahedron Lett.
1998, 39, 4971–4974; (d) Dankwardt, S. M.; Dankwardt, J.
W.; Schlessinger, R. H. Tetrahedron Lett. 1998, 39, 4975–
4978; (e) Dankwardt, J. W.; Dankwardt, S. M.; Schles-
singer, R. H. Tetrahedron Lett. 1998, 39, 4979–4982; (f)
Clark, J. S.; Marlin, F.; Nay, B.; Wilson, C. Org. Lett.
2003, 5, 89–92.
3. Synthesis of tetronic acid via other methods, see: (a)
Svendsen, A.; Boll, P. M. Tetrahedron 1973, 29, 4251–
4258; (b) Bloomer, J. L.; Kappler, F. E. J. Org. Chem.
1974, 39, 113; (c) Damon, R. E.; Luo, T.; Schlessinger, R.
H. Tetrahedron Lett. 1976, 17, 2749–2752; (d) Pollet, P.;
Gelin, S. Tetrahedron 1978, 34, 1453–1455; (e) Ireland, R.
E.; Thompson, W. J. J. Org. Chem. 1979, 44, 3041–3052;
(f) Krepski, L. R.; Lynch, L. E.; Heilman, S. M.;
Rasmussen, J. K. Tetrahedron Lett. 1985, 26, 981–984;
(g) Booth, P. M.; Fox, C. M. J.; Ley, S. V. J. Chem. Soc.,
Perkin Trans. 1 1987, 121–129; (h) Witiak, D.; Tehim, A.
K. J. Org. Chem. 1990, 55, 1112–1114; (i) Duffield, J. J.;
Regan, A. C. Tetrahedron: Asymmetry 1996, 7, 663–666;
(j) Ge, P.; Kirk, K. L. J. Org. Chem. 1996, 61, 8671–8673;
(k) Effenberder, F.; Syed, J. Tetrahedron: Asymmetry
1998, 817–825; (l) Langer, P.; Eckardt, T. Synlett 2000,
844–846; (m) Mitosis, C. A.; Zografos, A. L.; Igglessi-
Markopoulou, O. J. Org. Chem. 2000, 65, 5852–5853; (n)
Langer, P.; Eckardt, T. Synlett 2000, 844–846; (o) Pevet,
14. The crystal structure of compounds syn-13b and syn-13c
have been deposited at the Cambridge Crystallographic
Data Centre as CCDC 212546 and CCDC 212547.