10.1002/cssc.202001739
ChemSusChem
FULL PAPER
through a membrane filter (Millipore, Millex-LH, 0.20 mm) to remove Cu/C.
The filtrate was extracted with AcOEt (10 mL × 3). The combined organic
layers were dried over MgSO4 and concentrated in vacuo. The residue was
purified by silica-gel column chromatography to give the corresponding
cis-1,4-amino alcohol derivative (4 or 6).
[8]
[9]
C. Cesario, L. P. Tardibono, M. J. Miller, J. Org. Chem. 2009, 74, 448–
451.
S. D’Andrea, Z. B. Zheng, K. DenBleyker, J. C. Fung-Tomc, H. Yang, J.
Clark, D. Taylor, Joanne. Bronson, Bioorg. Med. Chem. Lett. 2005, 15,
2834–2839.
[10] D. Klamann, P. Weyerstahl, M. Fligge, K. Ulm, Chem. Ber. 1966, 99,
561–565.
Typical procedure in one-pot synthesis. To
a suspension of
[11] S. Scholz, B. Plietker, Org. Chem. Front. 2016, 3, 1295–1298.
[12] K. S. Gayen, T. Sengupta, Y. Saima, A. Das, D. K. Maiti, A. Mitra, Green
Chem. 2012, 14, 1589–1592.
nitrosobenzene derivative (1: 0.1 mmol) and cyclic 1,3-diene (2: 0.15
mmol) in H2O (0.9 mL) and 2-PrOH (0.1 mL) in a test tube were added
10% Cu/C (6.4 mg, 0.01 mmol) and Na2CO3 (31.8 mg, 0.3 mmol) at room
temperature under argon. After 3 h, the reaction mixture was placed on an
organic reactor, Chemi Station (EYELA, Tokyo Rikakikai Co., Ltd., Tokyo,
Japan), and the mixture was refluxed using external aluminum heating
block (100–150 oC). After an adequate reaction time, the reaction mixture
was cooled to room temperature and passed through a membrane filter
(Millipore, Millex-LH, 0.20 mm) to remove Cu/C. The filtrate was extracted
with AcOEt (10 mL × 3). The combined organic layers were dried over
MgSO4 and concentrated in vacuo. The residue was purified by silica-gel
column chromatography to give the corresponding cis-1,4-amino alcohol
derivative (4).
[13] a) L. Lei, C. Li, D.-L. Mo, Chin. J. Org. Chem. 2019, 39, 2989–3012; b)
N. Zou, J.-W. Jiao, Y. Feng, C.-X. Pan, C. Liang, G.-F. Su, D.-L. Mo, Org.
Lett. 2019, 21, 481–485; c) X.-P. Ma, L.-G. Li, H.-P. Zhao, M. Du, C.
Liang, D.-L. Mo, Org. Lett. 2018, 20, 4571–4574; d) J.-Y. Liao, Q.-Y. Wu,
X. Lu, N. Zou, C.-X. Pan, C. Liang, G.-F. Su, D.-L. Mo, Green. Chem.
2019, 21, 6567–6573.
[14] N. Yasukawa, M. Kuwata, T. Imai, Y. Monguchi, H. Sajiki, Y. Sawama,
Green Chem. 2018, 20, 4409–4413.
[15] The zero-valent copper was supported on carbon according to X-ray
photoelectron spectroscopy (XPS) analysis (See Figure S1).
[16] a) Y. Sawama, K. Morita, S. Asai, M. Kozawa, S. Tadokoro, J. Nakajima,
Y. Monguchi, H. Sajiki, Adv. Synth. Catal. 2015, 357, 1205–1210; b) Y.
Sawama, K. Morita, T. Yamada, S. Nagata, Y. Yabe, Y. Monguchi, H.
Sajiki, Green Chem. 2014, 16, 3439–3443.
Typical procedure in Ru/C-catalyzed oxidation of the N–O bond
cleaved products. To a suspension of cis-1,4-aminocyclohex-2-en-1-ol
derivative (4: 0.2 mmol) in toluene (1 mL) in a test tube was added 10%
Ru/C (20.2~40.4 mg, 0.02~0.04 mmol). The inside air was replaced with
O2 (balloon) by three vacuum/O2 cycles. The reaction system was placed
on an organic reactor, Chemi Station (EYELA, Tokyo Rikakikai Co., Ltd.,
Tokyo, Japan), and the mixture was heated up using external aluminum
heating block (at an adequate temperature. After an adequate reaction
time, the reaction mixture was cooled to room temperature and passed
through a membrane filter (Millipore, Millex-LH, 0.20 mm) to remove Ru/C.
The filtrate was concentrated in vacuo. The residue was purified by silica-
gel column chromatography to give the corresponding 4-
aminocyclohexenone derivative (7) or para-iminoquinone derivative (8).
[17] 3bc (3-ethyl substrate) was converted to the mixture of 3bc (19%) and
2-ethyl-substituted regio-isomer (38%) under the conditions without Cu/C
[3bc (0.025 mmol) and Na2CO3 (3 equiv.) in H2O/2-PrOH (225/25 μL)].
[18] J. Krugger, J. Electrochem. Soc. 1961, 108, 503–509.
[19] a) F. A. Cotton, G. Wilkinson, C. A. Murillo, M. Bochmann, In Advanced
Inorganic Chemistry, 6th ed.; Wiley, 1999; b) P.-G. Li, H. Zhu, M. Fan, C.
Yan, K. Shi, X.-W. Chi, L. H. Zou, Org. Biomol. Chem. 2019, 17, 5902–
5907; c) L.-H. Zou, H. Zhu, S. Zhu, K. Shi, C. Yan, P.-G. Li, J. Org. Chem.
2019, 84, 12301–12313.
[20] a) Y. Sawama, S. Asai, Y. Monguchi, H. Sajiki, Chem. Rec. 2016, 16,
261–272; b) N. Yasukawa, H. Yokoyama, M. Masuda, Y. Monguchi, H.
Sajiki, Y. Sawama, Green Chem. 2018, 20, 1213–1217; c) S. Mori, M.
Takubo, K. Makida, T. Yanase, S. Aoyagi, T. Maegawa, Y. Monguchi, H.
Sajiki, Chem. Commun. 2009, 5159–5161.
Acknowledgements
[21] a) A. Bolognese, G. Scherillo, W. Schäfer, J. Heterocycl. Chem. 1986,
23, 1003–1006; b) A. Bolognese, C. Piscitelli, G. Scherillo, J. Org. Chem.
1983, 48, 3649–3652; c) S. Nan’ya, E. Maekawa, H. Hayakawa, Y.
Kitaguchi, Y. Ueno, J. Heterocycl. Chem. 1985, 22, 1483–1485.
[22] a) R. Fan, W. Li, Y. Ye, L, Wang, Adv. Synth. Catal. 2008, 350, 1531–
1536; b) F. Baragona, T. Lomberget, C. Ducham, N. Henriques, E. L.
Piccolo, P. Diana, A. Montalbano, R. Barret, Tetrahedron 2011, 67,
8731–8739; c) D. R. Boyd, N. D. Sharma, M. Kaik, P. B. A. McIntyre, P.
J. Stevenson, C. C. R. Allen, Org. Biomol. Chem. 2012, 10, 2774–2779;
d) H. Noguchi, T. Aoyama, T. Shioiri, Heterocycls, 2002, 58, 471–504.
[23] a) R. Barret, M. Daudon, Tetrahedron 2011, 67, 8731–8739. Tetrahedron
Lett. 1991, 32, 2133–2134; b) T. Benincori, F. Sannicolò J. Hetetocycl.
Chem. 1998, 25, 1209–1033; c) A. P. Avdeenkoa, S. A. Konovalovaa, A.
G. Sergeevaa, R. I. Zubatyukb, G. V. Palamarchukb, O. V. Shishkin,
Russ. J. Org. Chem. 2008, 44, 1765–1772.
We thank the N. E. Chemcat Corporation for the kind gift of the
various metal-on-carbon catalysts. This study was supported by
a Grant-in-Aid for JSPS Research Fellows from the Japan Society
for the Promotion of Science (JSPS, Number: 18J14010 for N. Y.)
and Grant-in-Aid for Scientific Research (C) from the Japan
Society for the Promotion of Science (JSPS: 16K08169 for Y. S.)
and Takeda Science Foundation (for Y. S.).
Keywords: N–O bond cleavage • copper • one-pot synthesis •
heterogeneous catalyst • H2O
[1]
[2]
[3]
a) J. R. Lewis, Nat. Prod. Rep. 1997, 14, 303–308; b) T. Hudlicky, H. F.
Olivo, J. Am. Chem. Soc. 1992, 114, 9694–9696; c) J. H. Rigby, U. S. M.
Maharoof, M. E. Mateo, J. Am. Chem. Soc. 2000, 122, 6624–6628.
a) Y. A. Arbuzov, T. A. Mastryukova, Bull. Acad. Sci. USSR Div. Chem.
Sci. 1952, 1, 613-616; b) G. Kresze, G. Schulz, Tetrahedron 1961, 12,
7–12.
a) G. E. Keck, T. T. Wager, S. F. McHardy, Tetrahedron 1999, 55,
11755–11772; b) G. E. Keck, S. F. McHardy, T. T. Wager, Tetrahedron
Lett. 1995, 41, 7419–7422.
[4]
[5]
G. E. Keck, S. Fleming, D. Nickell, P. Weider, Synth. Commun. 1979, 9,
281–286.
a) S. Cicchi, A. Goti, A. Brandi, A. Guarna, F. De Sarlo, Tetrahedron Lett.
1990, 31, 3351–3354; b) M. Nitta, T. Kobayashi, J. Chem. Soc., Perkin
Trans. 1 1985, 1401–1406.
[6]
[7]
B. Yang, M. J. Miller, Org. Lett. 2010, 12, 392–395.
Y. Becker, A. Ewnswpt and Y. Shvo, Tetrahedron 1978, 34, 799–806.
6
This article is protected by copyright. All rights reserved.