6
Q. Lin et al. / Dyes and Pigments 96 (2013) 1e6
[35] Aksuner N, Basaran B, Henden E, Yilmaz I, Cukurovali A. A sensitive and
References
selective fluorescent sensor for the determination of mercury(II) based on
a novel triazine-thione derivative. Dyes Pigm 2011;88:143e8.
[1] Campbell L, Dixon DG, Hecky RE. A review of mercury in lake Victoria, east
Africa: implications for human and ecosystem health. J Toxicol Env Heal B
2003;6:325e56.
[2] Harris HH, Pickering IJ, George GN. The chemical form of mercury in fish.
Science 2003;301:1203.
[3] Tchounwou PB, Ayensu WK, Ninashvili N, Sutton D. Environmental exposure
to mercury and its toxicopathologic implications for public health. Environ
Toxicol 2003;18:149e75.
[4] Curley A, Sedlak VA, Girling EF, Hawk RE, Barthel WF, Pierce PE, et al. Organic
mercury identified as the cause of poisoning in humans and hogs. Science
1971;2:65e7.
[5] Onyido I, Norris AR, Buncel E. Biomoleculeemercury interactions: modalities
of DNA base-mercury binding mechanisms. Remediation strategies. Chem Rev
2004;104:5911e29.
[6] Aragay G, Pons J, Merkoçi A. Recent trends in macro-, micro-, and
nanomaterial-based tools and strategies for heavy-metal detection. Chem Rev
2011;111:3433e58.
[36] Ramesh GV, Radhakrishnan TP. A universal sensor for mercury (Hg, HgI, HgII)
based on silver nanoparticle-embedded polymer thin film. ACS Appl Mater
Interfaces 2011;3:988e94.
[37] Liu Y, Lv X, Zhao Y, Chen M, Liu J, Wang P, et al. A naphthalimideerhodamine
ratiometric fluorescent probe for Hg2þ based on fluorescence resonance
energy transfer. Dyes Pigm 2012;92:909e15.
[38] Cheng X, Li S, Jia H, Zhong A, Zhong C, Feng J, et al. For mercury(II): tunable
structures of electron donor and
p-conjugated bridge. Chem Eur J 2012;18:
1691e9.
[39] Wang C, Xu L, Wang Y, Zhang D, Shi X, Dong F, et al. Fluorescent silver
nanoclusters as effective probes for highly selective detection of mercury(II) at
parts-per-billion levels. Chem Asian J 2012;7:1652e6.
[40] Hu J, Wu T, Zhang G, Liu S. Highly selective fluorescence sensing of mercury
ions over a broad concentration range based on mixed polymeric micelles.
Macromolecules 2012;45:3939e47.
[41] Huang R, Zheng X, Wang C, Wu R, Yan S, Yuan J, et al. Reaction-based two-
photon fluorescent probe for turn-on mercury(II) sensing and imaging in
live cells. Chem Asian J 2012;7:915e8.
[7] Nolan EM, Lippard SJ. Tools and tactics for the optical detection of mercuric
ion. Chem Rev 2008;108:3443e80.
[42] Wen S, Zeng T, Liu L, Zhao K, Zhao Y, Liu X, et al. Highly sensitive and selective
[8] Quang DT, Kim JS. Fluoro- and chromogenic chemodosimeters for heavy metal
ion detection in solution and biospecimens. Chem Rev 2010;110:6280e301.
[9] Formica M, Fusi V, Giorgi L, Micheloni M. New fluorescent chemosensors for
metal ions in solution. Coord Chem Rev 2012;256:170e92.
[10] Kim HN, Guo Z, Zhu W, Yoon J, Tian H. Recent progress on polymer-based
fluorescent and colorimetric chemosensors. Chem Soc Rev 2011;40:79e93.
[11] Zalups RK. Molecular interactions with mercury in the kidney. Pharm Rev
2000;52:113e43.
DNA-based detection of mercury(II) with a-hemolysin nanopore. J Am Chem
Soc 2011;133:18312e7.
[43] Khan TK, Ravikanth M. 3-(Pyridine-4-thione)BODIPY as a chemodosimeter for
detection of Hg(II) ions. Dyes Pigm 2012;95:89e95.
[44] Tang X, Liu H, Zou B, Tian D, Huang H. A fishnet electrochemical Hg2þ sensing
strategy based on gold nanoparticle-bioconjugate and thymineeHg2þethy-
mine coordination chemistry. Analyst 2012;137:309e11.
[45] Lin L-Y, Chang L-F, Jiang S-J. Speciation analysis of mercury in cereals by liquid
chromatography chemical vapor generation inductively coupled plasma-mass
spectrometry. J Agric Food Chem 2008;56:6868e72.
[46] Dolan SP, Nortrup DA, Bolger PM, Capar SG. Analysis of dietary supplements
for arsenic, cadmium, mercury, and lead using inductively coupled plasma
mass spectrometry. J Agric Food Chem 2003;51:1307e12.
[47] Filippelli M. Determination of trace amounts of organic and inorganic mercury
in biological materials by graphite furnace atomic absorption spectrometry
and organic mercury speciation by gas chromatography. Anal Chem 1987;59:
116e8.
[48] Erxleben H, Ruzicka J. Atomic absorption spectroscopy for mercury, auto-
mated by sequential injection and miniaturized in lab-on-valve system. Anal
Chem 2005;77:5124e8.
[12] Strong LE. Mercury poisoning. J Chem Educ 1972;49:28e9.
[13] Ando S, Koide K. Development and applications of fluorogenic probes for mer-
cury(II) based onvinyl ether oxymercuration. J Am ChemSoc 2011;133:2556e66.
[14] Song F, Watanabe S, Floreancig PE, Koide K. Oxidation-resistant fluorogenic
probe for mercury based on alkyne oxymercuration. J Am Chem Soc 2008;
130:16460e1.
[15] Ko S-K, Yang Y-K, Tae J, Shin I. In vivo monitoring of mercury ions using
a rhodamine-based molecular probe. J Am Chem Soc 2006;128:14150e5.
[16] Yan Y, Hu Y, Zhao G, Kou X. A novel azathia-crown ether dye chromogenic che-
mosensorforthe selective detectionofmercury(II) ion. DyesPigm 2008;79:210e5.
[17] Leng B, Zou L, Jiang J, Tian H. Colorimetric detection of mercuric ion (Hg2þ) in
aqueous media using chemodosimeter-functionalized gold nanoparticles.
Sensor Actuat B 2009;140:162e9.
[49] Yang H, Zhou Z, Huang K, Yu M, Li F, Yi T, et al. Multisignaling optical- elec-
trochemical sensor for Hg2þ based on a rhodamine derivative with a ferrocene
unit. Org Lett 2007;9:4729e32.
[50] Zhang M, Yu M, Li F, Zhu M, Li M, Gao Y, et al. A highly selective fluorescence
turn-on sensor for cysteine/homocysteine and its application in bioimaging.
J Am Chem Soc 2007;129:10322e3.
[18] Zou Q, Jin J, Xu B, Ding L, Tian H. New photochromic chemosensors for Hg2þ
and Fꢁ. Tetrahedron 2011;67:915e21.
[19] Guo Z, Zhu W, Zhu M, Wu X, Tian H. Near-infrared cell-permeable Hg2þ
-
selective ratiometric fluorescent chemodosimeters and fast indicator paper
for MeHgþ based on tricarbocyanines. Chem Eur J 2010;16:14424e32.
[20] Ruan Y-B, Maisonneuve S, Xie J. Highly selective fluorescent and colorimetric
sensor for Hg2þ based on triazole-linked NBD. Dyes Pigm 2011;90:239e44.
[21] Ruan Y-B, Xie J. Unexpected highly selective fluorescence ‘turn-on’ and
ratiometric detection of Hg2þ based on fluorescein platform. Tetrahedron
2011;67:8717e23.
[51] Ros-Lis JV, Marcos MD, Mártinez-Máñez R, Rurack K, Soto J. A regenerative
chemodosimeter based on metal-induced dye formation for the highly
selective and sensitive optical determination of Hg2þ ions. Angew Chem Int Ed
2005;44:4405e7.
[52] Cheng X, Li S, Jia H, Zhong A, Zhong C, Feng J, et al. Fluorescent and colori-
[22] Peng X, Wang Y, Tang X, Liu W. Functionalized magnetic coreeshell
Fe3O4@SiO2 nanoparticles as selectivity-enhanced chemosensor for Hg(II).
Dyes Pigm 2011;91:26e32.
metric probes for mercury(II): tunable structures of electron donor and
p-
conjugated bridge. Chem Eur
chem.201102376.
J
[23] Wang L, Yan JX, Qin W, Liu W, Wang R. A new rhodamine-based single
molecule multianalyte (Cu2þ, Hg2þ) sensor and its application in the biological
system. Dyes Pigm 2012;92:1083e90.
[53] Zhang Y-M, Lin Q, Wei T-B, Wang D-D, Yao H, Wang Y-L. Simple colorimetric
sensors with high selectivity for acetate and chloride in aqueous solution.
Sensor Actuat B 2009;137:447e55.
[24] Suresh M, Mandal AK, Saha S, Suresh E, Mandoli A, Liddo RD, et al. Azine-
based receptor for recognition of Hg2þ ion: crystallographic evidence and
imaging application in live cells. Org Lett 2010;12:5406e9.
[54] Zhang Y-M, Lin Q, Wei T-B, Qin X-P, Li Y. A novel smart organogel which could
allow a two channel anion response by proton controlled reversible solegel
transition and color changes. Chem Commun 2009:6074e6.
[55] Liu M-X, Wei T-B, Lin Q, Zhang Y-M. A novel 5-mercapto triazole schiff base as
a selective chromogenic chemosensor for Cu2þ. Spectrochim Acta A 2011;79:
1837e42.
[56] Li J-Q, Wei T-B, Lin Q, Li P, Zhang Y-M. Mercapto thiadiazole-based sensor
with colorimetric specific selectivity for AcOꢁ in aqueous solution. Spec-
trochim Acta A 2011;83:187e93.
[25] Tan H, Zhang Y, Chen Y. Detection of mercury ions (Hg2þ) in urine using
a terbium chelate fluorescent probe. Sensor Actuat B 2011;156:120e5.
[26] Wang H-H, Xue L, Yu C-L, Qian Y-Y, Jiang H. Rhodamine-based fluorescent sensor
for mercury in buffer solution and living cells. Dyes Pigm 2011;91:350e5.
[27] Cheng X, Li S, Zhong A, Qin J, Li Z. New fluorescent probes for mercury (II) with
simple structure. Sensor Actuat B 2011;157:57e63.
[28] Zou Q, Tian H. Chemodosimeters for mercury (II) and methylmercury (I) based
on 2,1,3- benzothiadiazole. Sensor Actuat B 2010;149:20e7.
[29] Santra M, Roy B, Ahn KH. A “reactive” ratiometric fluorescent probe for
mercury species. Org Lett 2011;13:3422e5.
[30] Cheng C-C, Chen Z-S, Wu C-Y, Lin CC, Yang CR, Yen Y-P. Azo dyes featuring
a pyrene unit: new selective chromogenic and fluorogenic chemodosimeters
for Hg(II). Sensor Actuat B 2009;142:280e7.
[57] Zhang Y-M, Li P, Lin Q, Wei T-B, Li J-Q. A simple colorimetric sensor with high
selectivity for mercury cation in aqueous solution. Phosphorus Sulfur 2011;
186:2286e94.
[58] Zhang Y-M, Li Q, Zhang Q-S, Lin Q, Cao- C, Liu M-X, et al. Novel hydrazone-
based tripodal sensors: single selective colorimetric chemosensor for
acetate in aqueous solution. Chin J Chem 2011;29:1529e34.
[59] Zhang Y-M, Liu M-X, Lin Q, Li Q, Wei T-B. Mercapto thiadiazole-based sensors
with high selectivity and sensitivity for Hg2þ in aqueous solution. J Chem Res
2010:619e21.
[31] Yin BC, You M, Tan W, Ye BC. Mercury(II) ions detection via pyrene-mediated
chem.201103348.
[60] Zhang Y-M, Qin J-D, Lin Q, Li Q, Wei T-B. Convenient synthesis and anion
recognition properties of N-flurobenzoyl-N’-phenylthioureas in water-
containing media. J Fluorine Chem 2006;127:1222e7.
[32] Leng B, Jiang J, Tian H. A mesoporous silica supported Hg2þ chemodosimeter.
AIChE J 2010;56:2957e64.
[61] Valeur B, Pouget J, Bouson J, Kaschke M, Ernsting NP. Tuning of photoinduced
[33] Liu B, Tian H. A selective fluorescent ratiometric chemodosimeter for mercury
ion. Chem Commun 2005:3156e8.
energy transfer in
a bichromophoric coumarin supermolecule by cation
[34] Zou Q, Zou L, Tian H. Detection and adsorption of Hg2þ by new mesoporous
silica and membrane material grafted with a chemodosimeter. J Mater Chem
2011;21:14441e7.
binding. J Phys Chem 1992;96:6545e9.
[62] Analytical Methods Committee. Recommendations for the definition, esti-
mation and use of the detection limit. Analyst 1987;112:199e204.