Angewandte
Chemie
The pseudoenantiomeric mixtures of acetates were also
separately incubated with maleimide-functionalized porous
silicon as described above and the chips were then thoroughly
rinsed with toluene and ethanol. Alternatively, each pair of
acetates was attached to a different spot of the same pSi chip.
The resulting wafers were swirled together in an aqueous
buffer solution containing either CRL or PCL (12 h at room
temperature), washed with water and ethanol, and then
analyzed directly by DIOSMS. The resulting spectra, shown in
Figure 4, reproduced the solution-phase/HPLC findings quite
well. For example, with PCL, only the alcohol derived from 14
was observed, and no hydrolysis product from 15 was evident,
whereas both alcohols were detected in comparable amounts
with CRL. Similarly, in all other cases the relative reactivity
observed by HPLC were clearly reproduced in the chip-based
format. As a control, undecorated porous silicon was
incubated with the same mixtures of substrates 14–19 and
lipase in phosphate buffer under identical conditions. The
substrates and the hydrolyzed products were poorly detected
by DIOS, and washing of the products removed the signals
entirely.
Analytical methods based on mass spectrometry have the
general advantage over optical and radiolabel assays in that
the installation of chromophoric or radioactive tags is not
required and that detection of mass provides a general means
to monitor chemical changes in the analytes of interest. The
combination of the ability to detect analytes of different mass
in a single spectrum with the rapid data acquisition provided
by the chip-based format makes both DIOSMS and MALDI
well suited to high-throughput screening. Covalent attach-
ment of analytes further enhances these approaches by
enabling spatially addressable and multistep synthesis on
the chip. Most importantly, the making of a cleavable covalent
link between the analyte/probe and the surface allows the
user to wash the chips vigorously and thus overcome
problems of nonspecific adsorption and signal suppression.
Mrksich and Su have described the use of MALDI in this
fashion to analyze the conversion of surface-bound substrates
by a galactosyltransferase enzyme by using functionalized
alkanethiols, which relies on the ability of the MALDI laser
pulse to dissociate the Au–thiol bond.[5a]
[1] a) J. Wei, J. Buriak, G. Siuzdak, Nature 1999, 399, 243 – 246; b) Z.
Shen, J. J. Thomas, C. Averbuj, K. M. Broo, M. Engelhard, J. E.
Crowell, M. G. Finn, G. Siuzdak, Anal. Chem. 2001, 73, 612 –
619; c) J. J. Thomas, Z. Shen, J. E. Crowell, M. G. Finn, G.
Siuzdak, Proc. Natl. Acad. Sci. USA 2001, 98, 4932 – 4937; d) S.
Tuomikowki, K. Huikko, K. Grigoras, P. Östman, R. Kostiani-
nen, M. Baumann, J. Abian, T. Kotiaho, S. Franssila, Lab Chip
2002, 2, 247 – 253.
[2] a) M. P. Stewart, J. M. Buriak, Comments Inorg. Chem. 2002, 23,
179 – 203; b) J. M. Schmeltzer, L. A. Porter, Jr., M. P. Stewart,
C. M. Lopez, J. M. Buriak, Mater. Res. Soc. Symp. Proc. 2003,
737, 561 – 566; c) J. M. Buriak, M. J. Allen, J. Am. Chem. Soc.
1998, 120, 1339 – 1340; d) B. R. Hart, S. E. LØtant, S. R. Kane,
M. Z. Hadi, S. J. Shields, J. G. Reynolds, Chem. Commun. 2003,
322 – 323; e) F. Effenberger, G. Götz, B. Bidlingmaier, M.
Wezstein, Angew. Chem. 1998, 110, 2651 – 2654; Angew. Chem.
Int. Ed. 1998, 37, 2462 – 2464; f) A. R. Pike, L. H. Lie, R. A.
Eagling, L. C. Ryder, S. N. Patole, B. A. Connolly, B. R. Hor-
rocks, A. Houlton, Angew. Chem. 2002, 114, 637 – 639; Angew.
Chem. Int. Ed. 2002, 41, 615 – 617; g) A. Janshoff, K.-P. S. Dancil,
C. Steinem, D. P. Greiner, V. S.-Y. Lin, C. Gurtner, K. Mote-
sharei, M. J. Sailor, M. R. Ghadiri, J. Am. Chem. Soc. 1998, 120,
12108 – 12116; h) C. Gurtner, A. W. Wun, M. J. Sailor, Angew.
Chem. 1999, 111, 2132 – 2135; Angew. Chem. Int. Ed. 1999, 38,
1966 – 1968; i) N. Y. Kim, P. E. Laibinis, J. Am. Chem. Soc. 1997,
119, 2297 – 2298; j) N. Y. Kim, P. E. Laibinis, J. Am. Chem. Soc.
1998, 120, 4516 – 4517; k) L. H. Lie, S. N. Patole, E. R. Hart, A.
Houlton, B. R. Horrocks, J. Phys. Chem. B 2002, 106, 113 – 120.
[3] K.-P. S. Dancil, D. P. Greiner, M. J. Sailor, J. Am. Chem. Soc.
1999, 121, 7925 – 7930.
[4] a) M. C. Pirrung, Chem. Rev. 1997, 97, 473 – 488; b) R. W.
Nelson, D. Nedelkov, K. A. Tubbs, Electrophoresis 2000, 21,
1155 – 1163; c) G. MacBeath, S. L. Schreiber, Science 2000, 289,
1760 – 1763.
[5] a) J. Su, M. Mrksich, Angew. Chem. 2002, 114, 4909 – 4912;
Angew. Chem. Int. Ed. 2002, 41, 4715 – 4718; b) M. Merchant,
S. R. Weinberger, Electrophoresis 2000, 21, 1164 – 1167; c) R. W.
Nelson, J. R. Krone, O. Jansson, Anal. Chem. 1997, 69, 4363 –
4368; d) J. L. Bundy, C. Fenselau, Anal. Chem. 2001, 73, 751 –
757.
[6] H. Zou, Q. Zhang, Z. Guo, B. Guo, Q. Zhang, X. Chen, Angew.
Chem. 2002, 114, 668 – 670; Angew. Chem. Int. Ed. 2002, 41, 646 –
648.
[7] a) V. N. R. Pillai, Synthesis 1980, 1 – 26; b) V. N. R. Pillai in
Organic Photochemistry, Vol. 9 (Ed.: A. Padwa), Marcel
Dekker, New York, 1987, pp. 225 – 323; c) F. Guiller, D. Orain,
M. Bradley, Chem Rev. 2000, 100, 2091 – 2157; d) R. Glatthar, B.
Giese, Org. Lett. 2000, 2, 2315 – 2317.
[8] a) M. C. Fitzgerald, K. Harris, C. G. Shevlin, G. Siuzdak, Bioorg.
Med. Chem. Lett. 1996, 6, 979 – 982; b) J. M. Gerdes, H.
Waldmann, J. Comb. Chem. 2003, 5, 814 – 820.
[9] a) H. Budzikiewicz, J. I. Brauman, C. Djerassi, Tetrahedron 1965,
21, 1855 – 1879; b) H. Kwart, K. King, Chem. Rev. 1968, 68, 415 –
447.
Here we have shown Diels–Alder adducts to be cleavable
covalent linkers compatible with the DIOSMS technique,
useful in probing the reactivity of species attached to the
porous silicon surface. The triazine unit is a well-ionized
tripodal spacer, which allows for the attachment of tagging
residues or other components. Enzyme-catalyzed transforma-
tions on pSi-immobilized substrates were found to proceed
with similar relative activity and selectivity as those observed
in solution. Our methodology allows covalent attachment and
detachment to be implemented in the mass spectrometer
without added matrix material, and should be applicable to a
wide variety of analytes, chemical transformations, and
washing conditions.
[10] a) J. H. Bowie, A. H. Ho, J. Chem. Soc. Perkin Trans. 2 1975,
724 – 728; b) D. J. Burinsky, R. Dunphy, J. D. Alves-Santana,
M. L. Cotter, Org. Mass Spectrom. 1991, 26, 669 – 670; c) A.
Etinger, A. Mandelbaum, Org. Mass Spectrom. 1992, 27, 761 –
762; d) K. P. Madhusudanan, T. S. Dhami, A. Rani, S. N.
Suryawanshi, Rapid Commun. Mass Spectrom. 1993, 7, 92 – 94;
e) A. Lucas, J. Fernꢀndez-Gadea, N. Martin, R. Martꢁnez, C.
Seoane, Rapid Commun. Mass Spectrom. 2000, 14, 1783 – 1786;
f) N. Martin, R. Martꢁnez-Alvarez, C. Seoane, M. Suꢀrez, E.
Salfran, Y. Verdecia, N. K. Sayadi, Rapid Commun. Mass
Spectrom. 2001, 15, 20 – 24.
Received: September 5, 2003 [Z52803]
Keywords: cleavage reactions · combinatorial chemistry ·
.
lipases · mass spectrometry · porous silicon
Angew. Chem. Int. Ed. 2004, 43, 1255 –1255
ꢀ 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
1259