3339; (b) Bax, B. D.; Chan, P. F.; Eggleston, D. S.; Fosberry, A.; Gentry,
D. R.; Gorrec, F.; Giordano, I.; Hann, M. M.; Hennessy, A. J.; Hibbs, M.;
Huang, J.; Jones, E.; Jones, J.; Brown, K. K.; Lewis, C. J.; May, E. W.;
Saunders, M. R.; Singh, O.; Spitzfaden, C. E.; Shen, C.; Shillings, A.;
Theobald, A. J.; Wohlkonig, A.; Pearson, N. D.; Gwynn, M. N. Nature
2010, 466, 935; (c) Wohlkonig A.; Chan P.; Fosberry A.; Homes P.;
Huang J.; Kranz M.; Leydon V.; Miles T.; Pearson N.; Perera R.;
Shillings A.; Gwynn M.; Bax B.; Nat. Struct. Mol. Biol. 2010, 17(9),
1152-1153; (d) Gomez, L.; Hack, M. D.; Wu, J.; Wiener, J. J. M.;
Venkatesan, H.; Santillan, A.; Pippel, D. J.; Mani, N.; Morrow, B. J.;
Motley, S. T.; Shaw, K. J.; Wolin, R.; Grice, C. A.; Jones, T. K. Bioorg.
Med. Chem. Lett. 2007, 17, 2723; (e) Wiener, J. J. M.; Gomez, L.;
Venkatesan, H.; Santillan, A.; Allison, B. D.; Schwarz, K. L.; Shinde, S.;
Tang, L.; Hack, M. D.; Morrow, B. J.; Motley, S. T.; Goldschmidt, R.
M.; Shaw, K. J.; Jones, T. K.; Grice, C. A. Bioorg. Med. Chem. Lett.
2007, 17, 2718; (f) Miles, T. J.; Barfoot, C.; Brooks, G.; Brown, P.;
Chen, D.; Dabbs, S.; Davies, D. T.; Downie, D. L.; Eyrisch, S.;
Giordano, I.; Gwynn, M. N.; Hennessy, A. J.; Hoover, J.; Huang, J.;
Jones, G.; Markwell, R.; Rittenhouse, S.; Xiang, H.; Pearson, N. D.
Bioorg. Med. Chem. Lett. 2011, 21, 7483; (g) Miles, T. J.; Axten, J. M.;
Barfoot, C.; Brooks, G.; Brown, P.; Chen, D.; Dabbs, S.; Davies, D. T.;
Downie, D. L.; Eyrisch, S.; Gallagher, T.; Giordano, I.; Gwynn, M. N.;
Hennessy, A. J.; Hoover, J.; Huang, J.; Jones, G.; Markwell, R.; Miller,
W. H.; Minthorn, E. A.; Rittenhouse, S.; Seefeld, M.; Pearson, N. D.;
Bioorg. Med. Chem. Lett. 2011, 21, 7489; (h) Mitton-Fry, M. J.;
Brickner, S. J.; Hamel, J. C.; Brennan, L.; Casavant, J. M.; Chen, M.;
Chen, T.; Ding, X.; Driscoll, J.; Hardink, J.; Hoang, T.; Hua, E.; Huband,
M. D.; Maloney, M.; Marfat, A.; McCurdy, S. P.; McLeod, D.; Plotkin,
M.; Reilly, U.; Robinson, S.; Schafer, J.; Shepard, R. M.; Smith, J. F.;
Stone, G. G.; Subramanyam, C.; Yoon, K.; Yuan, W.; Zaniewski, R. P.;
Zook, C.; Bioorg. Med. Chem. Lett. 2013, 23, 2955.
(a) Cailleau, N.; Davies, D.T.; Hennessy, A. J.; Jones, G. E.; Miles, T. J.;
Pearson, N. D. WO2007071936; Chem. Abstr. 2007, 147, 118205; (b)
Voight, E. A.; Yin, H.; Downing, S. V.; Calad, S. A.; Matsuhashi, H.;
Giordano, I.; Hennessy, A. J.; Goodman, R. M.; Wood, J. L. Org. Lett.
2010, 12, 3422.
Axten, J. M.; Brooks, G.; Brown, P.; Davies, D.; Gallagher, T. F.;
Markwell, R. E.; Miller, W. H.; Pearson, N. D.; Seefeld, M.
WO2004058144; Chem. Abstr. 2004, 141, 140414.
Kerins, F.; O’Shea, D. F. J. Org. Chem. 2002, 67, 4968.
Moreno-Dorado, F. J.; Guerra, F. M.; Manzano, F. L.; Aladro, F. J.;
Jorge, Z. D.; Massanet, M. Tetrahedron Lett. 2003, 44, 6691.
Martinelli, M. J.; Nayyar, N. K.; Moher, E. D.; Dhokte, U. P.; Pawlak, J.
M.; Vaidyanathan, R. Org. Lett. 1999, 1, 447.
Davies, D. T.; Jones, G. E.; Markwell, R. E.; Miller, W.; Pearson, N. D.
WO2002056882; Chem. Abstr. 2002, 137, 125092.
Figure 3. In vivo efficacy of compound 1 (GSK966587)4 against S.
pneumoniae 1629. Each circle represents bacterial counts recovered from the
lungs of one animal. Filled circles represent animals sacrificed prior to the
end of the study.
Compound 14 (GSK966587) was progressed into in vivo
efficacy studies, including
a S. pneumoniae 1629 mouse
respiratory tract infection model , Figure 3.18 Non-neutropenic
mice were infected in the lungs via intranasal inhalation and
received either 14 or a positive control (moxifloxacin) via oral
gavage at 1, 7, 24 and 31 hours post infection. Pharmacokinetics
were evaluated at these doses to determine the exposure in blood
required for efficacy.
4.
5.
After 48 hours, bacterial numbers in non-treated control
animals (NTC) increased by more than 2 log10 colony forming
units (cfu) compared to those at the start of therapy (1 hour
NTC), indicating a robust infection was achieved. Compound 14
showed excellent efficacy in this model. At 50 mg/kg BID, a
mean reduction in bacterial counts of approximately 2 log10 cfu
was obtained compared with 1hour NTC. The higher dose
reduced bacterial burden below the limit of detection (1.7 log10
cfu/lungs) in 4/5 animals.
The AUC measured for the 50 mg/kg BID dose was
approximately 50 µg.h/ml per day with an associated Cmax of
approximately 8 µg/ml. This data demonstrates that excellent in
vivo efficacy can be obtained for a compound from this class in a
clinically relevant animal infection model.
In conclusion, we achieved our goal of demonstrating
efficacy and promising PK attributes with a tool compound 14.
Progression of compound 14 towards the clinic was discontinued
due to hepatic portal tract lesions observed in the 14-day dog
GLP safety toxicology study across all dose levels. This type of
toxicity has not been observed for other compounds within this
class, therefore we continue to evaluate the class for clinical
development.
6.
7.
8.
9.
10. (a) Moses, R. E.; Richardson, C. C. Proc. Natl. Acad. Sci. U.S.A. 1970,
67, 674; (b) Winston, S.; Masushita, T. J. Bacteriol., 1975, 123, 921; (c)
Bosworth, N.; Towers, P. Nature, 1989, 341, 167; The published
toluenized cell DNA replication assay was configured to a microtiter-
based Scintillation Proximity (SPA) format. H. influenzae was rendered
permeable to nucleotide substrates and cofactors by treatment with 1%
toluene for 10 min. DNA gyrase activity was determined by measuring
gyrase-dependent DNA replication in the toluenized cells by the ATP-
dependent incorporation of 33P-TTP. Final concentrations (per well):
20% toluenized H. influenzae cells, 0.05 µCi 33P-TTP, 33 µM dATP, 33
µM dGTP, 33 µM dCTP,13 µM dTTP, 2 mM ATP, 70 mM KPO4, 5 mM
DTT, 13 mM MgSO4, 0.01% BSA, 0.01% CHAPS, pH 7.4. Reactions,
incubated at 37 oC for approximately 30 min, were stopped with 10%
TCA, and SPA beads added for scintillation counting.
11. Brooks, G.; Giordano, I.; Hennessy, A. J.; Pearson, N. D.
WO2007122258; Chem. Abstr. 2007, 147, 502337.
12. Cailleau, N.; Davies D. T.; Esken, J. M.; Hennessy, A. J.; Kusalakumari
Sukumar, S. K.; Markwell, R. E.; Miles, T. J.; Pearson, N. D.
WO2007081597; Chem. Abstr. 2007, 147, 189160.
Acknowledgment
Acknowledgment is given to all the chemists and biologists
who have been involved in this work.
13. Jones, G. E.; Miles, T. J.; Pearson, N. D. WO2007115947; Chem. Abstr.
2007, 147, 469374.
14.
A
complex of
1
(GSK966587) with S. aureus GyrB27-
A56(GKdel/Tyr123Phe) (ref 3b) and a 20 base-pair DNA heteroduplex
(sequence below) was purified by size exclusion chromatography in
100mM Na2SO4, 20mM HEPES, 5mM MnCl2, pH 7.0. The purified
complex, 6.4mg/ml in 33mM Na2SO4, 20mM HEPES, 13mM NaCl,
1.7mM MnCl2, pH 7.0 was crystallised by the hanging drop method
against 11% PEG 5000MME, 100mM BisTris pH6.2. A crystal was
transferred into 15% glycerol + well solution and frozen in liquid
nitrogen. A 2.6Å dataset was collected from a single crystal at the ESRF
on beamline ID23-1 (cell P61 a=b=93.9Å, c=416.4Å). The structure was
refined starting from the complex with GSK299423 (PDB code: 2XCS -
cell P61 a=b=93.3Å, c=412.8Å – ref 3b), and coordinates have been
References
1.
(a) Payne, D. J.; Gwynn, M. N.; Holmes, D. J.; Pompliano, D. L. Nat.
Rev. Drug Disc. 2007, 6, 29; (b) Nathan, C. Nature, 2004, 431, 899; (c)
Fukuda, Y. Drugs Future 2009, 34, 127.
(a) Mitscher, L. A. Chem. Rev. 2005, 105, 559; (b) Mehlholm, A. J.;
Brown, D. A. Ann. Pharmacother. 2007, 41, 1859; (c) Rice, L. B. Curr.
Opin. Microbiol. 2009, 12, 476.
2.
3.
(a) Black, M. T.; Stachyra, T.; Platel, D.; Girard, A. M.; Claudon, M.;
Bruneau, J. M.; Miossec, C. Antimicrob. Agents. Chemother. 2008, 52,