C O M M U N I C A T I O N S
Table 3. Stereoinversions of 1a-f Using D- and L-AAO
Table 1. Yields of 6a-f from Suzuki Couplings
product
Ar
yield %
6a
6b
6c
6d
6e
6f
C6H5
81
77
84
72
82
73
p-F-C6H4
p-CF3-C6H4
2-naphthyl
2,5-di-Me-C6H3
p-MeO-C6H4
Scheme 4. Asymmetric Hydrogenation of Z-6a-f
substrate
Ar
enzyme
product
yield %
(2R,3S)-1a
(2R,3S)-1b
(2R,3S)-1c
(2R,3S)-1d
(2R,3S)-1e
(2R,3S)-1f
(2S,3R)-1a
(2S,3R)-1b
(2S,3R)-1c
(2S,3R)-1d
(2S,3R)-1e
(2S,3R)-1f
C6H5
C6H4-p-F
D-AAO
D-AAO
D-AAO
D-AAO
D-AAO
D-AAO
L-AAO
L-AAO
L-AAO
L-AAO
L-AAO
L-AAO
(2S,3S)-1a
(2S,3S)-1b
(2S,3S)-1c
(2S,3S)-1d
(2S,3S)-1e
(2S,3S)-1f
(2R,3R)-1a
(2R,3R)-1b
(2R,3R)-1c
(2R,3R)-1d
(2R,3R)-1e
(2R,3R)-1f
69
68
81
80
72
81
83
85
92
80
71
80
C6H4-p-CF3
2-naphthyl
C6H3-(2,5-DiMe)
C6H4-p-OMe
C6H5
C6H4-p-F
C6H4-p-CF3
2-naphthyl
Table 2. Yields and Enantiomeric Excesses of (2R,3S)-1a-f and
(2S,3R)-1a-f
C6H3-(2,5-DiMe)
C6H4-p-OMe
substrate
Ar
product
yield %
ee %
(2R,3S)-7a
(2S,3R)-7a
(2R,3S)-7b
(2S,3R)-7b
(2R,3S)-7c
(2S,3R)-7c
(2R,3S)-7d
(2S,3R)-7d
(2R,3S)-7e
(2S,3R)-7e
(2R,3S)-7f
(2S,3R)-7f
C6H5
C6H5
4-F-C6H4
4-F-C6H4
4-CF3-C6H4
4-CF3-C6H4
2-naphthyl
(2R,3S)-1a
(2S,3R)-1a
(2R,3S)-1b
(2S,3R)-1b
(2R,3S)-1c
(2S,3R)-1c
(2R,3S)-1d
(2S,3R)-1d
(2R,3S)-1e
(2S,3R)-1e
(2R,3S)-1f
(2S,3R)-1f
88
89
78
76
71
84
68
87
89
73
66
67
>99
>99
>99
>99
>99
>99
>99
>99
>99
>99
>99
>99
ening this approach to other classes of chiral compounds are
ongoing and will be reported in due course.
Acknowledgment. This work was supported by funds provided
by the Biotechnology and Biological Sciences Research Council
(CASE award to G.J.R.) and the Wellcome Trust.
2-naphthyl
Supporting Information Available: Experimental procedures for
the preparation of vinyl iodide Z-5, asymmetric hydrogenation reactions,
and the stereoinversion procedures (PDF). This material is available
2,5-di-Me-C6H3
2,5-di-Me-C6H3
4-MeO-C6H4
4-MeO-C6H4
References
Variabilis, which in combination with ammonia-borane complex
gave good yields (68-81%) of the desired (2S,3S)-diastereomers
of 1a-f with excellent selectivity (>99% de) (Table 3).13 The
corresponding L-â-arylphenylalanine analogues (2S,3R)-1a-f were
converted to the remaining set of (2R,3R)-diastereomers using snake
venom L-AAO and ammonia-borane complex with good to
excellent yields (80-92%) and again very high selectivity (de >
99%) (Table 3). One reaction, namely that involving (2S,3R)-1e
with L-AAO, did not go fully to completion, resulting in only a
71% conversion and 49% de. In this case, an alternative L-amino
acid oxidase would need to be identified with the appropriate
substrate specificity.
Finally, (2R,3R)-1a was converted to (2S,3R)-1a on a preparative
scale, using D-AAO from T. Variabilis and ammonia-borane
complex as the reducing agent, yielding the isolated product in 55%
yield. Workup of these reactions is very straightforward, involving
simply filtration to remove the enzyme catalyst, followed by
evaporation and recrystallization from ethanol/ethyl acetate.
In summary, we have developed a highly versatile and efficient
route to all but one of a set of 24 â-methylarylalanine analogues
1a-f in high yields and excellent enantiomeric/diasteroemeric
excesses. The vinyl iodide (Z)-5 is used as a unique building block
to access all 23 products via asymmetric hydrogenation of the (Z)-
â,â-disubstituted didehydroamino acids 6a-f followed by stereo-
inversion using D- and L-AAO’s. Further studies aimed at broad-
(1) (a) Hruby, V. J. J. Med. Chem. 2003, 46, 4215. (b) Toth, G.; Russell, K.
C.; Landis, G.; Kramer, T. H.; Fang, L.; Knapp, R.; Davis, P.; Burks, T.
F.; Yamamura, H. I.; Hruby, V. J. J. Med. Chem. 1992, 35, 2384.
(2) (a) Medina E.; Moyano A.; Perica`s, M. A.; Riera, A. J. Org. Chem. 1998,
63, 8574. (b) Dharanipragada, R.; VanHulle, K.; Bannister, A.; Bear, S.;
Kennedy, L.; Hruby, V. J. Tetrahedron 1992, 48, 4733.
(3) Erchegyi J.; Penke, B.; Simon, L.; Michaelson, S.; Wenger, S.; Waser,
B.; Cescato, R.; Schaer, J.-C.; Reubi, J.-C.; Rivier, J. J. Med. Chem. 2003,
46, 5587.
(4) Burk, M. J.; Gross, M. F.; Martinez, J. P. J. Am. Chem Soc. 1995, 117,
9375.
(5) (a) For recent reviews on asymmetric hydrogenation, see: Crepy, K. V.
L.; Imamoto, T. AdV. Synth. Catal. 2003, 345, 79. (b) Tang, W.; Zhang,
X. Chem. ReV. 2003, 103, 3029.
(6) (a) Alexandre, F.-R.; Pantaleone, D. P.; Taylor, P. P.; Fotheringham, I.
G.; Ager, D. J.; Turner, N. J. Tetrahedron Lett. 2002, 43, 707. (b) Beard,
T.; Turner, N. J. Chem. Commun. 2002, 246.
(7) (a) Alexeeva, M.; Enright, A.; Dawson, M. J.; Mahmoudian M.; Turner,
N. J. Angew. Chem., Int. Ed. 2002, 41, 3177. (b) Carr, R.; Alexeeva, M.;
Enright, A.; Eve, T. S. C.; Dawson, M. J.; Turner, N. J. Angew. Chem.,
Int. Ed. 2003, 42, 4807.
(8) Enright, A.; Alexandre, F.-R.; Roff, G.; Fotheringham, I. G.; Dawson,
M. J.; Turner, N. J. Chem. Commun. 2003, 2636.
(9) Nugent, W. A.; Feaster, J. E. Synth. Comm. 1998, 28, 1617.
(10) Burk, M. J.; Allen, J. G.; Kiesman, W. F.; Stoffan, K. M. Tetrahedron
Lett. 1997, 38, 1309.
(11) The corresponding N-benzyloxycarbonyl-protected Z-vinyl iodide has
previously been reported. Hoerrner, R. S.; Askin, D.; Volante, R. P.;
Reider, P. J. Tetrahedron Lett. 1998, 39, 3455.
(12) Silva, N. O.; Abreu, A. S.; Ferreira, P. M. T.; Monteiro L. S.; Queiroz,
M.-J. R. P. Eur. J. Org. Chem. 2002, 2524.
(13) All enantiomeric and diastereomeric excesses for the reactions were
determined by reverse-phase chiral HPLC (Chirobiotic T column; flow
rate ) 0.7 mL/min, eluant EtOH/H2O ) 40:60; see Supporting Information
for full details).
JA049499D
9
J. AM. CHEM. SOC. VOL. 126, NO. 13, 2004 4099