Edge Article
Chemical Science
13 F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, 28 H. Ismaili, S. P. Pitre and J. C. Scaiano, Catal. Sci. Technol.,
A. G. Orpen and R. Taylor, J. Chem. Soc., Perkin Trans. 2,
1987, S1–S19, DOI: 10.1039/P298700000S1.
2013, 3, 935–937.
29 See ESI for more details.†
14 D. M. Lemal, J. Org. Chem., 2004, 69, 1–11.
15 D. Lentz, T. Braun and M. F. Kuehnel, Angew. Chem., Int. Ed.
Engl., 2013, 52, 3328–3348.
30 (a) C. K. Prier, D. A. Rankic and D. W. C. MacMillan, Chem.
Rev., 2013, 113, 5322–5363; (b) D. M. Schultz and T. P. Yoon,
Science, 2014, 343; (c) J. M. R. Narayanam and
C. R. J. Stephenson, Chem. Soc. Rev., 2011, 40, 102–113.
16 (a) E. Clot, O. Eisenstein, N. Jasim, S. A. Macgregor,
J. E. McGrady and R. N. Perutz, Acc. Chem. Res., 2011, 44, 31 I. P. Beletskaya, G. A. Artamkina, A. Y. Mil'chenko,
333–348; (b) H. Torrens, Coord. Chem. Rev., 2005, 249,
1957–1985; (c) J. Weaver and S. Senaweera, Tetrahedron,
P. K. Sazonov and M. M. Shtern, J. Phys. Org. Chem., 1996,
9, 319–328.
2014, 70, 7413–7428; (d) A. D. Sun and J. A. Love, Dalton 32 U. Pischel, X. Zhang, B. Hellrung, E. Haselbach, P.-A. Muller
Trans., 2010, 39, 10362–10374; (e) T. Braun and and W. M. Nau, J. Am. Chem. Soc., 2000, 122, 2027–2034.
F. Wehmeier, Eur. J. Inorg. Chem., 2011, 2011, 613–625; (f) 33 (a) K. Okamoto, K. Ohkubo, K. M. Kadish and S. Fukuzumi, J.
A. D. Sun, K. Leung, A. D. Restivo, N. A. LaBerge,
H. Takasaki and J. A. Love, Chem.–Eur. J., 2014, 20, 3162–
Phys. Chem. A, 2004, 108, 10405–10413; (b) R. A. Marcus, J.
Phys. Chem. B, 1998, 102, 10071–10077.
3168; (g) A. D. Sun and J. A. Love, J. Fluorine Chem., 2010, 34 Modest yields are due, in part, to loss during the isolation
131, 1237–1240; (h) T. Wang and J. A. Love,
Organometallics, 2008, 27, 3290–3296; (i) T. Wang,
B. J. Alfonso and J. A. Love, Org. Lett., 2007, 9, 5629–5631;
(j) L. A. Wall, J. E. Fearn, W. J. Pummer and
J. M. Antonucci, J. Res. Natl. Bur. Stand., Sect. A, 1963, 67, 481.
17 (a) Y. Sun, H. Sun, J. Jia, A. Du and X. Li, Organometallics,
2014, 33, 1079–1081; (b) J. M. Birchall and
because of the highly uorinated nature of the substrates
which increases their relative volatility. Additionally, some
byproducts are commonly observed which also decrease
the yield, such as; the HDF product, the alkylated product
which has undergone subsequent HDF, and in cases of
more electrophilic uoroarenes, N-substitution from the
DIPEA.
R. N. Haszeldine, J. Chem. Soc., 1961, 3719–3727, DOI: 35 M. Lafrance, D. Shore and K. Fagnou, Org. Lett., 2006, 8,
10.1039/JR9610003719. 5097–5100.
18 W. Lu, J. Gao, J.-K. Yang, L. Liu, Y. Zhao and H.-C. Wu, Chem. 36 K. S. Gant and L. G. Christophorou, J. Chem. Phys., 1976, 65,
Sci., 2014, 5, 1934–1939. 2977–2981.
19 J. M. R. Narayanam, J. W. Tucker and C. R. J. Stephenson, J. 37 J. Mortensen and J. Heinze, Angew. Chem., Int. Ed., 1984, 23,
Am. Chem. Soc., 2009, 131, 8756–8757. 84–85.
20 (a) M. Cherevatskaya, M. Neumann, S. Fueldner, 38 J. A. Marsella, A. G. Gilicinski, A. M. Coughlin and G. P. Pez,
C. Harlander, S. Kuemmel, S. Dankesreiter, A. Ptzner, J. Org. Chem., 1992, 57, 2856–2860.
K. Zeitler and B. Koenig, Angew. Chem., Int. Ed., 2012, 51, 39 3-Cl-tetrauoropyridine is commercially available
a
4062–4066; (b) J. W. Tucker, J. M. R. Narayanam,
S. W. Krabbe and C. R. J. Stephenson, Org. Lett., 2010, 12,
byproduct of incomplete uorination in the halex process,
G. G. Yakobson and I. L. Knunyants, Syntheses of
uoroorganic compounds, Springer-Verlag, Berlin; New York,
1985.
368–371;
(c)
J.
W.
Tucker,
J.
D.
Nguyen,
J. M. R. Narayanam, S. W. Krabbe and C. R. J. Stephenson,
Chem. Commun., 2010, 46, 4985–4987.
40 (a) M. Newcomb, Tetrahedron, 1993, 49, 1151–1176; (b)
A. L. J. Beckwith and G. Moad, J. Chem. Soc., Perkin Trans.
2, 1980, 1083–1092, DOI: 10.1039/P29800001083.
21 S. Paria, V. Kais and O. Reiser, Adv. Synth. Catal., 2014, 356,
2853–2858.
22 J. D. Nguyen, E. M. D'Amato, J. M. R. Narayanam and 41 To the rst approximation examples of these motifs can be
C. R. J. Stephenson, Nat. Chem., 2012, 4, 854–859.
23 S. M. Senaweera, A. Singh and J. D. Weaver, J. Am. Chem. Soc.,
2014, 136, 3002–3005.
24 M. B. Yim and D. E. Wood, J. Am. Chem. Soc., 1976, 98, 2053–
2059.
25 (a) R. A. Rossi, Acc. Chem. Res., 1982, 15, 164–170; (b)
J. F. Bunnett, Acc. Chem. Res., 1978, 11, 413–420.
26 G. Reginato, M. P. Catalani, B. Pezzati, R. Di Fabio,
found for 31c see (a), for 32c and 33c see (b), for 35c see
(c)(a) H. Chen, Y. Chu, S. Do, A. Estrada, B. Hu,
A. Kolesnikov, X. Lin, J. P. Lyssikatos, D. Shore, V. Verma,
L. Wang, G. Wu and P.-W. Yuen, WO2015052264A1, 2015;
(b) E. L. Strangeland, L. J. Patterson and S. Zipfel, US pat.,
US20110230495A1, 2011; (c) U. Petersen, T. Schenke,
K. Grohe, M. Schriewer, I. Haller, K. G. Metzger,
R. Endermann and H. J. Zeiler, EP326916A2, 1989.
A. Bernardelli, O. Curcuruto, E. Moro, A. Pozzan and 42 S. Senaweera and J. D. Weaver, J. Org. Chem., 2014, 79,
A. Mordini, Org. Lett., 2015, 17, 398–401. 10466–10476.
27 G. A. Molander, in Radicals in Organic Synthesis, Wiley-VCH 43 J. M. Birchall, R. Hazard, R. N. Haszeldine and
Verlag GmbH, 2008, ch. 9, pp. 153–182, DOI: 10.1002/
A. W. Wakalski, J. Chem. Soc. C, 1967, 1967, 47–50.
9783527618293.
This journal is © The Royal Society of Chemistry 2015
Chem. Sci.