1314
K. S. Kim et al.
LETTER
(3) Kahne, D.; Walker, S.; Cheng, Y.; Engen, D. V. J. Am.
Chem. Soc. 1989, 111, 6881.
(4) Danishefsky, S. J.; Bilodeau, M. T. Angew. Chem., Int. Ed.
Engl. 1996, 35, 1380.
OR
O
Ph
O
O
O
BnO
a
+
32
30
Ph
O
O
O
BnO
(5) Schmidt, R. R.; Kinzy, W. Adv. Carbohydr. Chem. Biochem.
1994, 50, 21.
(6) Fraser-Reid, B.; Madsen, R. In Preparative Carbohydrate
Chemistry; Hanessian, S., Ed.; Marcel Dekker, Inc.: New
York, 1997, 339.
(7) Shimizu, M.; Togo, H.; Yokoyama, M. Synthesis 1998, 799.
(8) For recent examples of new glycosyl donors and activating
systems, see: (a) Plante, O. J.; Palmacci, E. R.; Andrade, R.
B.; Seeberger, P. H. J. Am. Chem. Soc. 2001, 123, 9545.
(b) Nguyen, H. M.; Chen, Y.; Duron, S. G.; Gin, D. Y. J. Am.
Chem. Soc. 2001, 123, 8766. (c) Hinklin, R. J.; Kiessling, L.
L. J. Am. Chem. Soc. 2001, 123, 3379. (d) Davis, B. J.;
Ward, S. J.; Rendle, P. M. Chem. Commun. 2001, 189.
(9) The 2¢-carboxybenzyl (CB) glycoside seems to be the more
appropriate name than the 2-(hydroxycarbonyl)benzyl
(HCB) glycoside, which was used in our earlier publication.
See, ref. 10
(10) Kim, K. S.; Kim, J. H.; Lee, Y. J.; Lee, Y. J.; Park, J. J. Am.
Chem. Soc. 2001, 123, 8477.
(11) Kim, K. S.; Park, J.; Lee, Y. J.; Seo, Y. S. Angew. Chem. Int.
Ed. 2003, 42, 459.
(12) The compound 3 has been prepared previously by a different
method. See: Scheffler, G.; Schmidt, R. R. J. Org. Chem
1999, 64, 1319.
OBCB
37: R = PMB
38: R = H
b
Ph
O
O
O
O
BnO
c
OPiv
O
+
34
36
O
BnO
BnO
OR
39: R = BCB
40: R = CB
d
Ph
O
O
O
BnO
O
OPiv
O
O
BnO
BnO
e
O
O
+
40
38
Ph
O
O
BnO
Ph
O
O
O
BnO
O
41
OBCB
(13) For discussions on a-glucopyranosylation, see: Crich, D.;
Scheme 4 Reagents and conditions a) 32, DTBMP, Tf2O, 4 Å MS,
CH2Cl2, –78 ºC, 10 min, then 30, –78 ºC to 0 ºC, 3 h, 91%; b) DDQ,
CH2Cl2–H2O (18:1), r.t., 9 h, 83%; c) 34, 36, DTBMP, 4 Å MS,
CH2Cl2, –40 ºC, then Tf2O, –40 ºC to 0 ºC, 3 h, 74% (a/b = 4:1);
d) H2, Pd/C, NH4OAc, MeOH, r.t., 1 h, 87%; e) 38, 40, DTBMP, 4 Å
MS, CH2Cl2, –40 ºC, then Tf2O, –40 ºC to 0 ºC, 3 h, 75%.
Cai, W. J. Org. Chem. 1999, 64, 4926.
(14) Jiang, L.; Chan, T.-H. Tetrahedron Lett. 1998, 39, 355.
(15) A solution of 40 (32 mg, 0.035 mmol, 1.0 equiv), 38 (39 mg,
0.042 mmol, 1.2 equiv) and 2,6-di-tert-butyl-4-methyl-
pyridine (21 mg, 0.11 mmol, 3.0 equiv) in CH2Cl2 (5 mL) in
the presence of 4A molecular sieves was stirred for 30 min
at room temperature and cooled to –40 ºC, then Tf2O (8.8
mL, 0.055 mmol, 1.5 equiv) was added. The reaction mixture
was stirred at –40 ºC for further 1 h and allowed to warm
over 2 h to 0 °C. The reaction mixture was quenched with
saturated aqueous NaHCO3 and the organic phase was
washed with brine, dried (MgSO4), concentrated in vacuo.
The residue was purified by silica gel flash column
chromatography (33% ethyl acetate in hexane) to afford
compound 41 (44 mg, 75%): colorless oil, Rf = 0.37 (33%
ethyl acetate in hexane); [a]D20 = +46.3 (c 1.5, CHCl3); 1H
NMR (250 MHz, CDCl3) d 1.14 (s, 9 H), 3.38–3.47 (m, 2 H),
3.56–3.63 (m, 2 H), 3.69 (dd, J = 3.0 Hz, 5.0 Hz, 1 H), 3.83–
3.91 (m, 5 H), 4.00–4.11 (m, 5 H), 4.14 (dd, J = 2.5 Hz, 5.0
Hz, 1 H), 4.22–4.35 (m, 6 H), 4.39–4.47 (m, 2 H), 4.52–4.65
(m, 5 H), 4.70–4.82 (m, 5 H), 4.92 (d, J = 6.0 Hz, 1 H), 5.00–
5.12 (m, 3 H), 5.29 (m, 1 H), 5,33 (s, 2 H), 5.53 (s, 1 H), 5.59
(s, 1 H), 5.61 (s, 1 H), 7.06–7.55 (m, 46 H), 7.68 (dd, J = 3.7
Hz, 3.7 Hz, 1 H), 7.94 (d, J = 3.7 Hz, 1 H), 8.00 (d, J = 3.7
Hz, 1 H); 13C NMR (63 MHz, CDCl3) d 27.3, 39.0, 64.9,
66.7, 67.8, 68.1, 68.4, 68.6, 69.1, 69.6, 70.0, 70.8, 71.4, 72.7,
73.9, 74.4, 74.7, 76.7, 78.6, 80.1, 97.3, 98.0, 98.8, 100.9,
101.4, 101.5, 101.6, 125.8, 125.9, 126.0, 126.1, 127.3,
127.6, 127.9, 128.0, 128.1, 128.2, 128.3, 128.4, 128.6,
129.0, 134.0, 137.7, 146.5, 166.7, 177.1, 194.6; Anal. Calcd
for C100H102O24: C, 71.16; H, 6.09. Found: C, 71.15; H, 6.11;
MALDI-TOF MS Calcd for 1725.7761 (M + K). Found
1725.7712.
stirred solution of the glycosyl donor 40, acceptor 38, and
DTBMP in the presence of 4 Å MS at –40 ºC to afford ex-
clusively the desired a-tetrasaccharide 4115 in 75% yield.
This result indicates that the participating group at C-2 is
working well in the CB glycosides and the present meth-
odology could be applied for the construction of more
complex important oligosaccharides.
In summary, we have shown that CB glycosides having
various protective groups can be employed as efficient
glycosyl donors and demonstrated the power of the CB
glycoside methodology in oligosaccharide synthesis by
presenting the efficient construction of a tetrasaccharide.
Acknowledgement
This work was support by a grant (2001-1-0064) from Yonsei
University.
References
(1) (a) Varki, A. Glycobiology 1993, 3, 97. (b) Dwek, R. A.
Chem. Rev. 1996, 96, 683.
(2) Garegg, P. J. Adv. Carbohydr. Chem. Biochem. 1997, 52,
179.
Synlett 2003, No. 9, 1311–1314 ISSN 1234-567-89 © Thieme Stuttgart · New York