In summary, an asymmetric alk-2-enylation reaction of
aldehydes by a p-TsOH‚H2O catalyzed allyl-transfer reaction
from (+)-isomenthone adducts as chiral allyl-donors gave
(E)- and (Z)-homoallylic alcohol R-adducts, via a six-
membered chairlike transition state, in good yield with >99%
ee. This is the first example of an asymmetric (Z)-alk-2-
enylation of aldehydes. The chiral allyl donors were conve-
niently prepared using an environmentally friendly Grignard
reagent with easily available (+)-isomenthone. Therefore,
there was no need to prepare an allylmetallic reagent such
as allyltin by transmetalation with a Grignard reagent and
so on. Finally, it is noteworthy that the conformational
analysis of the six-membered chairlike transition state is
Scheme 3. Configuration of 11 (Assignment by Analogy)
which Gives (Z)-5 via Allyl-Transfer Reaction
(3) Allyltributyltin with chiral catalyst: (a) Yanagisawa, A.; Nakashima,
H.; Ishiba, A.; Yamamoto, H. J. Am. Chem. Soc. 1996, 118, 4723-4724.
(b) Weigand, S.; Bru¨ckner, R. Chem. Eur. J. 1996, 2, 1077-1084. (c) Cozzi,
P. G.; Orioli, P.; Tagliavini, E.; Umani-Ronchi, A. Tetrahedron Lett. 1997,
38, 145-148. (d) Lipshutz, B. H.; James, B.; Vance, S.; Carrico, I.
Tetrahedron Lett. 1997, 38, 753-756. (e) Yu, C.-M.; Choi, H.-S.; Jung,
W.-H.; Kim, H.-J.; Shin, J. Chem. Commun. 1997, 761-762. (f) Motoyama,
Y.; Narusawa, H.; Nishiyama, H. J. Chem. Soc., Chem. Commun. 1999,
131-132. (g) Doucet, H.; Santelli, M. Tetrahedron: Asymmetry 2000, 11,
4163-4169. (h) Loh, T.-P.; Zhou, I.-R. Tetrahedron Lett. 2000, 41, 5261-
5264. (i) Brenna, E.; Scaramelli, L.; Serra, S. Synlett 2000, 357-358. (j)
Denmark, S. E.; Wynn, T. J. Am. Chem. Soc. 2001, 123, 6199-6200. (k)
Kurosu, M.; Lorca, M. Tetrahedron Lett. 2002, 43, 1765-1769. (l) Kii, S.;
Maruoka, K. Tetrahedron Lett. 2001, 42, 1935-1939. (m) Hanawa, H.;
Hashimoto, T.; Maruoka, K. J. Am. Chem. Soc. 2003, 125, 1708-1709.
Excess allyltributyltin or tetraallyltin with chiral catalyst (allylation of
ketones): (n) Casolari, S.; D’Addario, D.; Tagliavini, E. Org. Lett. 1999,
1, 1061-1063. (o) Waltz, K. M.; Gavenonis, J.; Walsh, P. J. Angew. Chem.,
Int. Ed. 2002, 41, 3697-3699. Allylsilane with chiral catalyst: (p) Gauthier,
D. R., Jr.; Carreira, E. M. Angew. Chem., Int. Ed. Engl. 1996, 35, 2363-
2365. (q) Denmark, S. E.; Fu, J. J. Am. Chem. Soc. 2000, 122, 12021-
12022. (r) Yamasaki, S.; Fujii, K.; Wada, R.; Kanai, M.; Shibasaki, M. J.
Am. Chem. Soc. 2002, 124, 6536-6537. (s) Malkov, A. V.; Orsini, M.;
Pernazza, D.; Muir, K. W.; Langer, V.; Meghani, P.; Kocovsky, P. Org.
Lett. 2002, 4, 1047-1049. (t) Malkov, A. V.; Dufkova´, L.; Farrugia, L.;
Kocovsky, P. Angew. Chem., Int. Ed. 2003, 42, 3674-3677. Allylbromide
and metallic Mn with chiral Cr(II)[salen]-catalyst: (u) Bandini, M.; Cozzi,
P. G.; Melchiorre, P.; Umani-Ronchi, A. Angew. Chem., Int. Ed. 1999, 38,
3357-3359. (v) Suzuki, T.; Kinoshita, A.; Kawada, H.; Nakada, M. Synlett
2003, 570-572. (w) Inoue, M.; Suzuki, T.; Nakada, M. J. Am. Chem. Soc.
2003, 125, 1140-1141.
(4) Asymmetric 1-methylallylation and related reactions: By chiral
catalyst with tributylcrotyltin: (a) Marshall, J. A.; Tang, Y. Synlett 1992,
653-654. By chiral catalyst with crotylsilane: (b) Furuta, K.; Mouri, M.;
Yamamoto, H. Synlett 1991, 561-582. (c) Yanagisawa, A.; Kageyama,
H.; Nakatsuka, Y.; Asakawa, K.; Matsumoto, Y.; Yamamoto, H. Angew.
Chem., Int. Ed. 1999, 38, 3701-3703. (d) Aoki, S.; Mikami, K.; Terada,
M.; Nakai, T. Tetrahedron 1993, 49, 1783-1792. (e) Iseki, K.; Mizuno,
S.; Kuroki, Y.; Kobayashi, Y. Tetrahedron Lett. 1998, 39, 2767-2770. (f)
Nakajima, M.; Saito, M.; Shiro, M.; Hashimoto, S.-i. J. Am. Chem. Soc.
1998, 120, 6419-6420. (g) Denmark, S. E.; Fu, J. J. Am. Chem. Soc.
2001, 123, 9488-9489. By Cr(II)[salen]-catalyst with crotyl bromide
and metallic Mn: (h) Bandini, M.; Cozzi, P. G.; Umani-Ronchi, A.
Angew. Chem., Int. Ed. 2000, 39, 2327-2330. Noncatalytic reaction
by a stoichiometric amount of chiral B-crotylborane reagents: (i) Roush,
W. R.; Halterman, R. L. J. Am. Chem. Soc. 1986, 108, 294-296. (j) Roush,
W. R.; Ando, K.; Powers, D. B.; Halterman, R. L.; Palkowitz, A. D.
Tetrahedron Lett. 1988, 29, 5579-5582. (k) Garcia, J.; Kim, B. M.;
Masamune, S. J. Org. Chem. 1987, 52, 4831-4832. (l) Brown, H. C.;
Jadhav, R. K. Tetrahedron Lett. 1984, 25, 1215-1218. (m) Brown, H. C.;
Bhat, K. S. J. Am. Chem. Soc. 1986, 108, 293-294. (n) Jadhav, P. K.;
Bhat, K. S.; Perumal, T.; Brown, H. C. J. Org. Chem. 1986, 51, 432-439.
(o) Brown, H. C.; Bhat, K. S.; Randad, R. S. J. Org. Chem. 1989, 54, 1570-
1576. (p) Ref 2c. By a stoichiometric amount of crotyltitanium complex
with a chiral auxiliary: (q) BouzBouz, S.; Cossy, J. Org. Lett. 2001, 3,
3995-3998.
(+)-menthone having the 5-epi configuration of (2R,5S)-(+)-
isomenthone. From this, it is very reasonable to assume that
(S)-11 will give (E)-5.
Note that if the methyl substituent takes an equatorial
configuration in a transition state such as TS-2, the isopropyl
substituent has to be an axial conformation. In this case, there
is a strong steric hindrance preventing the transition state
TS-3, due to both the methyl and isopropyl substituents on
the isomenthane ring. Therefore, the formation of (Z)-5 via
transition state TS-2 is the most reasonable route. The
formation of (E)-5 via both transition states TS-4 and TS-5
seems to be favorable.
(2) Chiral B-allylborane: (a) Racherla, U. S.; Brown, H. C. J. Org. Chem.
1991, 56, 401-404. (b) Williams, D. R.; Clark, M. P.; Emde, U.; Berliner,
M. A. Org. Lett. 2000, 2, 3023-3026. (c) Lachance, H.; Lu, X.; Gravel,
M.; Hall, D. G. J. Am. Chem. Soc. 2003, 125, 10160-10161. Allyltin having
chiral ligand: (d) Otera, J.; Yoshinaga, Y.; Yamaji, T.; Yoshioka, T.;
Kawasaki, Y. Organometallics 1985, 4, 1213-1218. Allyltin with a
chiral auxiliary: (e) Mukaiyama, T.; Minowa, N.; Oriyama, T.; Narasaka,
K. Chem. Lett. 1986, 97-100. (f) Boldrini, G. P.; Lodi, L.; Tagliavini,
Tarasco, C.; E.; Trombini, C.; Umani-Ronchi, A. J. Org. Chem. 1987, 52,
5447-5452. (g) Boga, C.; Savoia, D.; Tagliavini, E.; Trombini, C.; Umani-
Ronchi, A. J. Ogranometal. Chem. 1988, 353, 177-183. (h) Kobayashi,
S.; Nishio, K. Tetrahedron Lett. 1995, 36, 6729-6732. (i) Yamada,
K.; Tozawa, T.; Nishida, M.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 1997,
70, 2301-2308. Allyl bromide and metallic indium with a chiral aux-
iliary: (j) Loh, T.-P.; Zhou, J.-R.; Yin, Z. Org. Lett. 1999, 1, 1855-
1857. (k) Loh, T.-P.; Zhou, J.-R. Tetrahedron Lett. 1999, 40, 9115-9118.
(l) Loh, T.-P.; Zhou, J.-R. Tetrahedron Lett. 1999, 40, 9333-9336.
Allyltitanium complexed with a chiral auxiliary: (m) Bouzbouz, S.; Cossy,
J. Org. Lett. 2000, 2, 501-504. (n) Bouzbouz, S.; Popkin, M. P.; Cossy, J.
Org. Lett. 2000, 2, 3449-3451. (o) Cossy, J.; Willis, C.; Bellosta, V.;
Bouzbouz, S. Synlett 2000, 1461-1463. Allylsilane with chiral aux-
iliary or catalyst: (p) Denmark, S. E.; Coe, D. M.; Pratt, N. E.; Griedel, B.
D. J. Org. Chem. 1994, 59, 6161-6163. (q) Zhang, L. C.; Sakurai, H.;
Kira, M. Chem. Lett. 1997, 129-130. (r) Kubota, K.; Leighton, J. L. Angew.
Chem., Int. Ed. 2003, 42, 946-948. (s) Kinnaird, J. W. A.; Ng, P. Y.;
Kubota, K.; Wang, X.; Leighton, J. L. J. Am. Chem. Soc. 2002, 124, 7920-
7921. (t) Duthaler, R. O.; Hafner, A. Angew. Chem., Int. Ed. Engl. 1997,
36, 43-45.
(5) (a) Nokami, J.; Yoshizane, K.; Matsuura, H.; Sumida, S. J. Am. Chem.
Soc. 1998, 120, 6609-6610. (b) Sumida, S.; Ohga, M.; Mitani, J.; Nokami,
J. J. Am. Chem. Soc. 2000, 122, 1310-1313. (c) Nokami, J.; Anthony, L.;
Sumida, S. Chem. Eur. J. 2000, 6, 2909-2913. (d) Nokami, J.; Ohga, M.;
Nakamoto, H.; Matsubara, T.; Hussain, I.; Kataoka, H. J. Am. Chem. Soc.
2001, 123, 9168-9169. (e) Nokami, J.; Nomiyama, K.; Matsuda, S.; Imai,
N.; Kataoka, H. Angew. Chem., Int. Ed. 2003, 42, 1273-1275.
Org. Lett., Vol. 6, No. 8, 2004
1263