C O M M U N I C A T I O N S
Table 2. Cu-Catalyzed Tandem Conjugate Addition-Dieckmann
and Blaise Condensationa
philic trapping has been demonstrated. Future studies will focus
on the development of related catalytic tandem C-C bond forming
transformations with attendant applications toward the total syn-
thesis of complex natural products.
Acknowledgment. Acknowledgment is made to the Research
Corporation Cottrell Scholar Award (CS0927), the Alfred P. Sloan
Foundation, the Camille and Henry Dreyfus Foundation, Eli Lilly,
and the UT Austin Center for Materials Research (CMC) for partial
support of this research.
Supporting Information Available: Spectral data for all new
compounds (1H NMR, 13C NMR, IR, HRMS) (CIF and PDF). This
References
(1) For selected reviews on tandem or “domino” transformations, see: (a)
Nicolaou, K. C.; Montagnon, T.; Snyder, S. A. Chem. Commun. 2003,
551. (b) Tietze, L. F. Chem. ReV. 1996, 96, 115. (c) Tietze, L. F.; Beifuss,
U. Angew. Chem., Int. Ed. Engl. 1993, 32, 131.
(2) For selected reviews on stoichiometric conjugate addition-electrophilic
trapping, see: (a) Suzuki, M.; Noyori, R. Organocopper Reagents 1994,
185. (b) Taylor, R. J. K. Synthesis 1985, 364. (c) Chapdelaine, M. J.;
Hulce, M. Org. React. 1990, 38, 225. (d) Ihara, M.; Fukumoto, K. Angew.
Chem., Int. Ed. Engl. 1993, 32, 1010.
(3) For Co-catalyzed 1,4-reduction-aldol and Michael cyclization, see: (a)
Baik, T.-G.; Luiz, A.-L.; Wang, L.-C.; Krische, M. J. J. Am. Chem. Soc.
2001, 123, 5112. (b) Wang, L.-C.; Jang, H.-Y.; Roh, Y.; Schultz, A. J.;
Wang, X.; Lynch, V.; Krische, M. J. J. Am. Chem. Soc. 2002, 124, 9448.
(4) For Rh-catalyzed 1,4-reduction-aldol cyclization, see: (a) Jang, H.-Y.;
Huddleston, R. R.; Krische, M. J. J. Am. Chem. Soc. 2002, 124, 15156.
(b) Huddleston, R. R.; Krische, M. J. Org. Lett. 2003, 5, 1143.
(5) For PR3-catalyzed 1,4-addition-Michael cyclization, see: (a) Wang, L.-
C.; Luiz, A.-L.; Agapiou, K.; Jang, H.-Y.; Krische, M. J. J. Am. Chem.
Soc. 2002, 124, 2402. (b) Agapiou, K.; Krische, M. J. Org. Lett. 2003, 5,
1737.
(6) For catalytic 1,4-addition-cycloallylation, see: Jellerichs, B. G.; Kong,
J.-R.; Krische, M. J. J. Am. Chem. Soc. 2003, 125, 7758.
(7) For Rh-catalyzed 1,4-addition-aldol cyclization, see: Cauble, D. F.;
Gipson, J. G.; Krische, M. J. J. Am. Chem. Soc. 2003, 125, 1110.
(8) For selected reviews on enantioselective Cu-catalyzed conjugate addition,
see: (a) Alexakis, A.; Benhaim, C. Eur. J. Org. Chem. 2002, 3221. (b)
Feringa, B. L.; Naasz, R.; Imbos, R.; Arnold, L. A. Modern Organocopper
Chemistry; Krause, N. Ed.; Wiley-VCH: Weinheim, Germany, 2002; pp
224-258. (c) Feringa, B. Acc. Chem. Res. 2000, 33, 346.
a See Supporting Information for detailed experimental procedures. b The
structural assignment of 15b is based on X-ray diffraction analysis. c The
vinylogous amide 16b spontaneously hydrolyzes in situ to afford â-diketone
12b.
(9) Recent advances include use of the following substrate classes: (a) Acyclic
nitro olefins: Duursma, A.; Minnaard, A. J.; Feringa, B. L. J. Am. Chem.
Soc. 2003, 125, 3700. (b) Cyclic nitro olefins: Luchaco-Cullis, C. A.;
Hoveyda, A. H. J. Am. Chem. Soc. 2002, 124, 8192. (c) R,â-Unsaturated
N-acyloxazolidinones: Hird, A. W.; Hoveyda, A. H. Angew. Chem., Int.
Ed. 2003, 42, 1276. (d) Trisubstituted cyclic enones: Degrado, S. J.;
Mizutani, H.; Hoveyda, A. H. J. Am. Chem. Soc. 2002, 124, 13362. (e)
Dione mono-acetals: Arnold, L. A.; Naasz, R.; Minnaard, A. J.; Feringa,
B. L. J. Am. Chem. Soc. 2001, 123, 5841. For other variations see ref 2.
(10) (a) Kitamura, M.; Miki, T.; Nakano, K.; Noyori, R. Tetrahedron Lett.
1996, 37, 5141. (b) Feringa, B. L.; Pineschi, M.; Arnold, L. A.; Imbos,
R.; de Vries, A. H. M. Angew. Chem., Int. Ed. Engl. 1997, 36, 2620. (c)
Keller, E.; Maurer, J.; Naasz, R.; Schader, T.; Meetsma, A.; Feringa, B.
L. Tetrahedron: Asymmetry 1998, 9, 2409. (d) Arnold, L. A.; Naasz, R.;
Minnaard, A. J.; Feringa, B. L. J. Org. Chem. 2002, 67, 7244.
(11) Naasz, R.; Arnold, L. A.; Pineschi, M.; Keller, E.; Feringa, B. L. J. Am.
Chem. Soc. 1999, 121, 1104.
desired cyclization product 2b in nearly quantitative yield and as a
single diastereomer. Under these optimized conditions, Cu-catalyzed
tandem conjugate addition-aldolization of keto-enone substrates
1a-10a was demonstrated (Table 1). Inspired by these results and
the established ability of zinc-enolates to condense with recalcitrant
electrophiles such as nitriles,14 related catalytic tandem conjugate
addition-Dieckmann and Blaise cyclizations were explored. Upon
application of standard reaction conditions to mono-enone mono-
esters 11a-14a and mono-enone mono-nitriles 15a-18a, the
corresponding cyclized products were obtained in excellent yield
(Table 2). Finally, to demonstrate the feasibility of developing
enantioselective variants of these tandem C-C bond formations,
enone-dione 6a was subjected to standard reaction conditions using
Feringa’s phosphoramidite ligand.8c While diastereoselectivity
suffered, high levels of asymmetric induction were observed.
In summation, the use of ketones, esters, and nitriles as terminal
electrophiles in Cu-catalyzed tandem conjugate addition-electro-
(12) (a) Mizutani, H.; Degrado, S. J.; Hoveyda, A. H. J. Am. Chem. Soc. 2002,
124, 779. (b) Degrado, S. J.; Mizutani, H.; Hoveyda, A. H. J. Am. Chem.
Soc. 2001, 123, 775.
(13) Alexakis, A.; Trevitt, G. P.; Bernardinelli, G. J. Am. Chem. Soc. 2001,
123, 4358.
(14) Blaise, E. E. C. R. Hebd. Seances Acad. Sci. 1901, 132, 478.
JA030603L
9
J. AM. CHEM. SOC. VOL. 126, NO. 14, 2004 4529