References
´
1
2
A. Sorokin, J. L. Seris and B. Meunier, Science, 1995, 268, 1163.
S. Sen Gupta, M. Stadler, C. A. Noser, A. Ghosh, B. Steinhoff, D.
Lenoir, C. P. Horwitz, K. W. Schramm and T. J. Collins, Science,
2002, 296, 326.
3
4
T. J. Collins, Acc. Chem. Res., 2002, 35, 782.
A. Sorokin and B. Meunier, J. Chem. Soc., Chem. Commun., 1994,
1799.
5
A. Sorokin, S. De Suzzoni-Dezard, D. Poullain, J. P. Noe¨l and B.
Meunier, J. Am. Chem. Soc., 1996, 118, 7410.
B. Meunier and A. Sorokin, Acc. Chem. Res., 1997, 30, 470.
G. Labat, J. L. Se´ris and B. Meunier, Angew. Chem., Int. Ed.
Engl., 1990, 29, 1471.
6
7
8
9
G. Labat and B. Meunier, J. Org. Chem., 1989, 54, 5008.
C. Hemmert, M. Renz and B. Meunier, J. Mol. Catal. A: Chem.,
1999, 137, 205.
10 R. P. Ferrari, E. Laurenti and F. Trotta, J. Biol. Inorg. Chem.,
1999, 4, 232.
11 M. J. Bartos, S. W. Gordon-Wylie, B. G. Fox, L. J. Wright, S. T.
Weintraub, K. E. Kauffmann, E. Munck, K. L. Kostka, E. S.
¨
Uffelman, C. E. F. Rickard, K. R. Noon and T. J. Collins, Coord.
Chem. Rev., 1998, 174, 361.
12 R. M. Alberici and W. F. Jardim, Water Res., 1994, 28, 1845.
13 J. C. D’Oliveira, C. Minero, E. Pelizzetti and P. Pichat, J. Photo-
chem. Photobiol., A, 1993, 72, 261.
Fig. 8 UV-vis spectrophotometric identification of 2,6-dichloro-3-
hydroxy-1,4-benzoquinone in a sample taken from the Fe(TPPS)þ cat-
alyzed oxidation of 2,4,6-trichlorophenol by H2O2 . The sample was
titrated with HCl. m ¼ 0.1 M (NaNO3), 25.0 ꢃC and path length of 1
cm. pH values are shown on the figure itself.
14 X. Li, J. W. Cubbage, T. A. Tetzlaff and W. S. Jenks, J. Org.
Chem., 1999, 64, 8509.
15 X. Li, J. W. Cubbage and W. S. Jenks, J. Org. Chem., 1999, 64,
8525.
sample had a pH of 3.29 and the UV-vis spectrum was the
same as the independently known spectrum of dissociated
´
´ ´
16 K. Mogyorosi, A. Farkas, I. Dekany, I. Ilisz and A. Dombi,
Environ. Sci. Technol., 2002, 36, 3618.
2,6-dichloro-3-hydroxy-1,4-benzoquinone.
Furthermore,
17 F. J. Benitez, J. Beltran-Hereida, J. L. Acero and F. J. Rubio, Ind.
Eng. Chem. Res., 1999, 38, 1341.
18 S. Antonaraki, E. Androulaki, D. Dimotikali, A. Hiskia and E.
Papaconsantinou, J. Photochem. Photobiol., A, 2002, 148, 191.
19 L. Ukrainczyk and M. B. McBride, Environ. Toxicol. Chem.,
1993, 12, 2015.
quantitative evaluation of the titration data gave a character-
istic pKa of 1.7 ꢄ 0.1. This is also in good agreement with the
pKa of 2,6-dichloro-3-hydroxy-1,4-benzoquinone (1.57) known
independently from the earlier photochemical study.35
20 L. Padilla, V. Matus, P. Zenteno and B. Gonza´lez, J. Basic.
Microbiol., 2000, 40, 243.
21 G. V. B. Reddy, M. D. S. Gelpke and M. H. Gold, J. Bacteriol.,
1998, 180, 5259.
Conclusions
22 R. S. Shukla, A. Robert and B. Meunier, J. Mol. Catal. A: Chem.,
1996, 113, 45.
An important conclusion from the results presented in this
paper is that the rate constants characteristic for the catalytic
oxidation of different chlorophenols do not follow the pattern
of pKas, but correlate well with the 13C chemical shifts of the
carbon atoms directly bonded to the oxygen in chlorophenols.
In addition, a study of the catalyzed and uncatalyzed oxida-
tions of 2,6-dichloro-1,4-benzoquinone by hydrogen peroxide
showed that the two pathways give different products. In the
oxidation sequence starting from a chlorophenol, the uncata-
lyzed pathway of this process, which produces a substituted
hydroxybenzoquinone, is much more important than the cata-
lyzed pathway.
23 H. Lubbecke and P. Boldt, Angew. Chem., Int. Ed. Engl., 1976,
¨
15, 608.
24 I. Nagypa´l and L. Ze´ka´ny, in Computational Methods for the
Determination of Formation Constants, ed. D. J. Leget, Plenum,
Press, New York, 1985, p. 291.
25 G. Lente and J. H. Espenson, Chem. Commun., 2003, 1162.
26 Scientist, version 2.01, Micromath Software, Salt Lake City, UT,
USA, 1995.
27 W. H. Hunter and M. Morse, J. Am. Chem. Soc., 1926, 48,
1615.
28 G. Lente and J. H. Espenson, Int. J. Chem. Kinet., in press.
29 J. H. Espenson, Chemical Kinetics and Reaction Mechanisms,
Mc-Graw Hill, New York, 1995.
30 A. A. El-Awady, P. C. Wilkins and R. G. Wilkins, Inorg. Chem.,
1985, 24, 2053.
31 R. A. Jerussi, J. Org. Chem., 1970, 35, 2105.
32 O. B. Lantratova, A. I. Prokof’ev, I. V. Khudyakov, V. A.
Kuzmin and I. E. Pokrovskaya, Nouv. J. Chim., 1982, 6, 365.
33 S. I. Ahonkhai, I. Wiater and R. Louw, Organohalogen Compd.,
2000, 46, 74.
34 A. Brunmark and E. Cadenas, Free Radical Biol. Med., 1987,
3, 169.
35 G. Lente and J. H. Espenson, J. Photochem. Photobiol., A, 2004,
163, 249.
36 K. C. Kurien and P. A. Robins, J. Chem. Soc. B, 1970, 855.
Acknowledgements
This research was supported by the Center for Catalysis, Insti-
tute for Physical Research and Technology, Iowa State
University. Some experiments were conducted with the use
of the facilities of the Ames Laboratory, which is operated
by Iowa State University of Science and Technology under
contract W-7405-Eng-82. We acknowledge helpful discussions
with Prof. W. S. Jenks and Mr. Youn-chul Oh. GL also wishes
to thank the Fulbright Program and Hungarian funding
agency OTKA (grant No. T042755) for financial support.
´
37 A. Nemes, I. Fabian and G. Gordon, Inorg. React. Mech., 2000,
´
2, 327.
38 A. Rossi, G. Guyot and P. Boule, C. R. Acad. Sci., Ser. II: Mec.,
Phys., Chim., Sci. Terre Univers, 1986, 303, 1179.
T h i s j o u r n a l i s Q T h e R o y a l S o c i e t y o f C h e m i s t r y a n d t h e
C e n t r e N a t i o n a l d e l a R e c h e r c h e S c i e n t i f i q u e 2 0 0 4
852
N e w . J . C h e m . , 2 0 0 4 , 2 8 , 8 4 7 – 8 5 2