1478
Yang et al.
[(18)F]fluoro-2-methylbutanoic acid (FAMB): relationship of
amino acid transport to tumor imaging properties of branched
fluorinated amino acids. Nucl. Med. Biol. 30:477Y490 (2003).
5. P. L. Jager, B. E. Plaat, E. G. de Vries, W. M. Molenaar, W.
Vaalburg, D. A. Piers, and H. J. Hoekstra. Imaging of soft-tissue
tumors using L-3-[iodine-123]iodo-alpha-methyl-tyrosine single
photon emission computed tomography: comparison with prolif-
erative and mitotic activity, cellularity, and vascularity. Clin.
Cancer Res. 6:2252Y2259 (2000).
6. J. G. Tjuvajev, M. Doubrovin, T. Akhurst, S. Cai, J. Balatoni,
M. M. Alauddin, R. Finn, W. Bornmann, H. Thaler, P. S. Conti,
and R. G. Blasberg. Comparison of radiolabeled nucleoside
probes (FIAU, FHBG, and FHPG) for PET imaging of HSV1-tk
gene expression. J. Nucl. Med. 43:1072Y1083 (2002).
7. M. Namavari, J. R. Barrio, T. Toyokuni, S. S. Gambhir, S. R.
Cherry, H. R. Herschman, M. E. Phelps, and N. Satyamurthy.
Synthesis of 8-[18F]fluoroguanine derivatives: in vivo probes for
imaging gene expression with positron emission tomography.
Nucl. Med. Biol. 27:157Y162 (2000).
8. S. S. Gambhir, E. Bauer, M. E. Black, Q. Liang, M. S. Kokoris,
J. R. Barrio, M. Iyer, M. Namavari, M. E. Phelps, and H. R.
Herschman. A mutant herpes simplex virus type 1 thymidine
kinase reporter gene shows improved sensitivity for imaging
reporter gene expression with positron emission tomography.
Proc. Natl. Acad. Sci. USA 97:2785Y2790 (2000).
FLT) is a new tracer that images cellular proliferation by
entering the salvage pathway of DNA synthesis. Although
FLT was shown to be a promising agent to assess cell pro-
liferation, its DNA incorporation rate is low and its chemistry
is complex (31). Deep-seated tumors in blood-rich organs
may require significantly higher ratios for the assessment of
proliferation. To enhance biological activity and increase
chemical or metabolic stability, fluorine substitution at the
C20 position of the sugar moiety (arabino configuration) has
been widely investigated in drug research (32,33). However,
its chemistry is complex, involving several steps in the syn-
thesis. To assess tumor growth, we selected guanine because it
is involved in both mRNA and DNA pathways, unlike
thymidine, which mainly involves DNA pathways. The bio-
logical half-life of 99mTc-EC-Guan was determined to be
approximately 74 min, which is three to four times longer than
known purine- and pyrimidine-based agents (34).
Our preclinical data indicated that EC-Guan was
involved in the cell cycle S-phase. Its simple chemistry also
overcomes the complex chemistry of 18F-FLT. Although
many other radiopharmaceuticals could be used for
assessment of tumor proliferation and/or metabolic activity
(3), the choice should be determined not only by the
biological behavior of radiopharmaceuticals, but also by its
ease of preparation.
9. M. Iyer, J. R. Barrio, M. Namavari, E. Bauer, N. Satyamurthy,
K. Nguyen, T. Toyokuni, M. E. Phelps, H. R. Herschman, and S.
S. Gambhir. 8-[18F]Fluoropenciclovir: an improved reporter
probe for imaging HSV1-tk reporter gene expression in vivo
using PET. J. Nucl. Med. 42:96Y105 (2001).
10. M. M. Alauddin and P. S. Conti. Synthesis and preliminary
evaluation of 9-(4-[18F]-fluoro-3-hydroxymethylbutyl)guanine
([18F]FHBG): a new potential imaging agent for viral infection
and gene therapy using PET. Nucl. Med. Biol. 25:175Y180
(1998).
CONCLUSIONS
In summary, we have developed 99mTc-EC-Guan, and
our findings suggest that 99mTc-EC-Guan incorporates into
tumor cell DNA/RNA, which can be used as a predictor of
tumor proliferative activity.
11. H. Barthel, M. Perumal, J. Latigo, Q. He, F. Brady, S. K. Luthra,
P. M. Price, and E. O. Aboagye. The uptake of 30-deoxy-30-
[(18)F]fluorothymidine into L5178Y tumours in vivo is dependent
on thymidine kinase 1 protein levels. Eur. J. Nucl. Med. Mol.
Imaging 32:257Y263 (2005).
12. P. Goethals, M. V. Eijkeren, W. Lodewyck, and R. Dams. Mea-
surement of [methyl-carbon-11]thymidine and its metabolites
in head and neck tumors. J. Nucl. Med. 36:880Y882 (1995).
13. J. Tjuvajev, H. A. Macapinlac, F. Daghighian, A. M. Scott, J. Z.
Ginos, R. D. Finn, P. Kothari, R. Desai, J. Zhang, B. Beattie, M.
Graham, S. M. Larson, and R. G. Blasberg. Imaging of brain
tumor proliferative activity with iodine-131-iododeoxyuridine. J.
Nucl. Med. 35:407Y1417 (1994).
14. Y. Abe, H. Fukuda, K. Ishiwata, S. Yoshioka, K. Yamada, S.
Endo, K. Kubota, T. Sato, T. Matsuzawa, T. Takahashi, and T.
Ido. Studies on 18F-labeled pyrimidines tumor uptakes of 18F-5-
Flourouracil, 18F-5-Flourouridine, and 18F-5-Flourodeoxyuridine
in animals. Eur. J. Nucl. Med. 8:258Y261 (1983).
ACKNOWLEDGMENTS
The authors wish to thank Eloise Daigle for her
secretarial support. This work was supported in part by
Cell>Point L.L.C (MDA LS01-212) and the John S. Dunn
Foundation. The animal research and NMR facility was
supported by M. D. Anderson Cancer Center (CORE) Grant
NIH CA-16672.
15. C. G. Kim, D. J. Yang, E. E. Kim, A. Cherif, L. R. Kuang, C. Li,
W. Tansey, C. W. Liu, S. C. Li, S. Wallace, and D. A. Podoloff.
Assessment of tumor cell proliferation using [18F]fluorodeoxyadenosine
and [18F]fluoroethyluracil. J. Pharm. Sci. 85:339Y344 (1996).
REFERENCES
1. K. Kubota, K. Ishiwata, R. Kubota, S. Yamada, M. Tada, T. Sato, 16. K. Ohtsuki, K. Akashi, Y. Aoka, F. G. Blankenberg, S.
and T. Ido. Tracer feasibility for monitoring tumor radiotherapy:
a quadruple tracer study with fluorine-18-fluorodeoxyglucose or
fluorine-18-fluorodeoxyuridine L-[methy1-14C]methioni-
ne,[6-3H]thymidine, and gallium-67. J. Nucl. Med. 32:2118Y2123
(1991).
Kopiwoda, J. F. Tait, and H. W. Strauss. Technetium-99m
HYNIC-annexin V: a potential radiopharmaceutical for the
in-vivo detection of apoptosis. Eur. J. Nucl. Med. 26(10):
1251Y1258 (1999).
17. C. G. Van Nerom, G. M. Bormans, M. J. De Roo, and A. M.
Verbruggen. First experience in healthy volunteers with techne-
tium-99m L,L-ethylenedicysteine, a new renal imaging agent. Eur.
J. Nucl. Med. 20:738Y746 (1993).
2. J. Okada, K. Yoshihawa, M. Itami, K. Imaseki, K. Uno, J. Itami,
J. Kuyama, A. Mikata, and N. Arimizu. Positron emission
tomography using fluorine-18-fluorodeoxyglucose in malignant
lymphoma: a comparison with proliferative activity. J. Nucl. 18. E. P. Canet, C. Casali, A. Desenfant, M. Y. An, C. Corot, J. F.
Med. 33:325Y329 (1992).
Obadia, D. Revel, and M. F. Janier. Kinetic characterization of
CMD-A2-Gd-DOTA as an intravascular contrast agent for
myocardial perfusion measurement with MRI. Magn. Reson.
Med. 43:403Y409 (2000).
3. K. Higashi, A. C. Clavo, and R. L. Wahl. Does FDG uptake
measure proliferative activity of human cancer cells? In vitro
comparison with DNA flow cytometry and tritiated thymidine
uptake. J. Nucl. Med. 34:414Y419 (1992).
4. J. McConathy, L. Martarello, E. J. Malveaux, V. M. Camp, N. E.
Simpson, C. P. Simpson, G. D. Bowers, Z. Zhang, J. J. Olson, and
M. M. Goodman. Synthesis and evaluation of 2-amino-4-
19. H. C. Wu, C. H. Chang, M. M. Lai, C. C. Lin, C. C. Lee, and
A. Kao. Using Tc-99m DMSA renal cortex scan to detect renal
damage in women with type 2 diabetes. J. Diabet. Complicat.
17:297Y300 (2003).