698
M.R.I. Zubiri et al. / Polyhedron 23 (2004) 693–699
(2 ml). The dichloromethane solution was filtered
through Celite and diethyl ether (20 ml) was added. The
white product was collected by suction filtration and
washed with diethyl ether (2 ꢂ 10 ml). Recrystallisation
from Toluene–hexane gave crystals. Yield: 0.159 g, 72%;
Microanalysis: Found: (Anal. Calc.) C, 53.8 (53.3); H,
7.7 (7.4); N, 4.4 (4.4)%; 31P{H} NMR (CDCl3): 104.1 (s)
ppm, 1J(77Se–31P) 741 Hz; Selected IR data (KBr):
m(PN) 936 cmꢀ1, m(PSe) 594 cmꢀ1; FABþ MS: m/z 630/2
[M], 655 [M+Naþ].
References
[1] S. Miyano, M. Nawa, A. Mori, H. Hashimoto, Bull. Chem. Soc.
Jpn. 57 (1984) 2171.
[2] (a) P.W.N.M. van Leeuwen, C.P. Casey, G.T. Whiteker,
Rhodium Catalysed Hydroformylation, in: P.W.N.M. van Leeu-
wen, C. Claver, Kluber Academic Publishers, Dordrecht, The
Netherlands, 2000 (Ch. 4);
(b) F. Agbossou, J.F. Carpentier, A. Mortreux, Chem. Rev. 95
(1995) 2485;
(c) M. Beller, B. Cornils, C.D. Frohning, C.W. Kohlpaintner,
J. Mol. Catal. A 104 (1995) 17.
cis-[PtCl2{(iPr)2PN(CH2Ph)CH2 CH2(CH2Ph)NP
(iPr)2}] 7. To a dichloromethane (10 ml) solution of
[PtCl2(cod)] (0.195 g, 0.52 mmol) was added (iPr)2PN
(CH2Ph)CH2CH2(CH2Ph)NP(iPr)2 (0.246 g, 0.52
mmol) in dichloromethane (5 ml) and the colourless
solution stirred for ca. 2–3 h. The solution was con-
centrated under reduced pressure to ca. 1 ml and diethyl
ether (10 ml) added. The white product was collected by
suction filtration and washed with diethyl ether (2 ꢂ 10
ml). Yield: 0.315 g, 82%; 31P{H} NMR (CDCl3): 86.7 (s)
ppm, 1J(195Pt–31P) 4106 Hz; Selected IR data (KBr):
m(PN) 887 cmꢀ1, m(PtCl) 337 and 326 cmꢀ1; FABþMS:
m/z 702/3 [M–Clꢀ], 666/8 [M–2Clꢀ].
Catalytic studies [Rh(acac)(CO)2] (0.01 mol dmꢀ3),
phosphine (0.023 mol dmꢀ3), hex-1-ene(1 cm3) were re-
acted in toluene (4 cm3) at 100 °C and 20 bar CO/H2
(1:1) for time stated in Table 1. The rhodium complex,
phosphine and toluene were heated at 100 °C and 14 bar
CO/H2 (1:1) for 45 min, to allow the active catalyst to
form before injection of the hex-1-ene and pressurising
to 20 bar.
[3] C.P. Casey, E.L. Paulsen, E.W. Beuttenmueller, B.R. Proft, B.A.
Matter, D.R. Powell, J. Am. Chem. Soc. 121 (1999) 63.
[4] C.P. Casey, G.T. Whiteker, M.G. Melville, L.M. Petrovich, J.A.
Gavney Jr., D.R. Powell, J. Am. Chem. Soc. 114 (1992) 5535.
[5] L.A. Van der Veen, M.D.K. Boele, F.R. Bregman, P.C.J. Kamer,
P.W.N.M. van Leeuwen, K. Goubitz, J. Fraanje, H. Schenk, C.
Bo, J. Am. Chem. Soc. 120 (1998) 11616.
[6] (a) P.W.N.M. van Leeuwen, C.F. Roobeek, J. Organomet. Chem.
258 (1983) 343;
(b) T. Jongsma, G. Challa, P.W.N.M. van Leeuwen, J. Organo-
met. Chem. 421 (1991) 121;
(c) A. van Rooy, E.N. Orij, P.C.J. Kamer, F. Van den Aardweg,
P.W.N.M. van Leeuwen, J. Chem. Soc., Chem. Commun. (1991)
1096;
(d) A. van Rooy, E.N. Orij, P.C.J. Kamer, P.W.N.M. van
Leeuwen, Organometallics 14 (1995) 34;
(e) M.P. Magee, W. Luo, W.H. Hersh, Organometallics 21 (2002)
362;
(f) B. Breit, R. Winde, T. Mackewitz, R. Paciello, K. Harms,
Chem. Eur. J. 7 (2001) 3106;
(g) R. Jackstell, H. Klein, M. Beller, K.-D. Wiese, D. Rottger,
Eur. J. Org. Chem. 20 (2001) 3871.
[7] J.D. Unruh, J.R. Christenson, J. Mol. Catal. 14 (1982) 19.
[8] W.R. Moser, C.J. Papile, D.A. Brannon, R.A. Duwell, J. Mol.
Catal. 41 (1987) 271.
Crystallography was performed using a Bruker
SMART diffractometer; full hemisphere of data with
0.3° ÔslicesÕ, room temperature, Mo Ka radiation and
empirical absorption corrections. All of the non-H atoms
were refined anisotropically with the hydrogen atoms
being refined in idealised geometries. All calculations
employed the SHELXTL program system [38].
[9] L.A. van der Veen, P.C.J. Kamer, P.W.N.M. van Leeuwen,
Organometallics 18 (1999) 4765.
[10] D.J. Wink, T.J. Kwok, A. Yee, Inorg. Chem. 29 (1990) 5006.
[11] E. Billing, A.G. Abatjoglou, D.R. Bryant, U.S. Patent 4,668,651,
European Patent Application 213,639, 1987 (to Union Carbide),
Chem. Abstr., 107 (1987) 7392.
[12] E. Billing, A.G. Abatjoglou, D.R. Bryant, R.E. Murray, J.M.
Maher, U.S. Patent 4,599,206, 1986 (to Union Carbide), Chem.
Abstr., 109 (1988) 233177.
[13] M. Rodriguez i Zubiri, M.L. Clarke, D.F. Foster, D.J. Cole-
Hamilton, A.M.Z. Slawin, J.D. Woollins, J. Chem. Soc., Dalton
Trans. (2001) 969.
4. Supplementary materials
[14] M. Rodriguez i Zubiri, A.M.Z. Slawin, M. Wainwright, J.D.
Woollins, Polyhedron 21 (2002) 1729.
Crystallographic data for the structural analyses has
been deposited with the Cambridge Crystallographic
data centre, CCDC Nos. 221581–221584 Copies of this
information may be obtained free of charge from The
Director CCDC, 12 Union Road, Cambridge, CB2 1EZ
UK (Fax +44 1223 336-033 or E-mail deposit@
[15] M.L. Clarke, A.M.Z. Slawin, M.V. Wheatley, J.D. Woollins, JCS
Dalton (2001) 3421.
[16] S.M. Aucott, A.M.Z. Slawin, J.D. Woollins, JCS Dalton (2001)
2279.
[17] M. Wainwright, J.D. Woollins, JCS Dalton (2001) 2724.
[18] M.L. Clarke, D.J. Cole-Hamilton, J.D. Woollins, JCS Dalton
(2001) 2721.
[19] M.L. Clarke, G. Holliday, A.M.Z. Slawin, J.D. Woollins, JCS
Dalton (2002) 1093.
[20] Q. Zhang, S.M. Aucott, A.M.Z. Slawin, J.D. Woollins, Eur. J.
Inorg. Chem., Cover (2002) 1635.
Acknowledgements
[21] M.L. Clarke, A.M.Z. Slawin, J.D. Woollins, Polyhedron 22 (2003)
22.
We are grateful to the EPSRC for support, to John-
son Matthey for loans of precious metals and to the
JREI for an equipment grant.
[22] Q. Zhang, G. Hua, P. Bhattacharyya, A.M.Z. Slawin, J.D.
Woollins, Eur. J. Inorg. Chem. (2003) 2426.