A R T I C L E S
Ebran et al.
Scheme 1
phenols and alkyl ketones. Nevertheless, there are some concerns
which limit the use of aryl and alkenyl triflates or nonaflates.
Instability issues as well as the requirement of expensive
triflating and nonaflating agents for the synthesis of the Heck
precursors are major disadvantages, and hence alternative and
less costly means for activating phenols or alkyl ketones would
therefore be welcomed.13-19
As a potential substitute for alkenyl triflates and nonaflates,
the corresponding tosylates and phosphates have proven their
worth in a variety of cross coupling reactions such as the Stille,20
Negishi,21 Suzuki,20a,22 Kumada,23 Sonogashira,20a,24 amination/
amidation (Buchwald-Hartwig),23c,25 and carbonyl enolate
arylations.22e However, in many instances efforts were concen-
trated on the use of activated vinyl tosylates and phosphates
such as R,â-unsaturated esters and ketones or R-heteroatom
substituted olefins, as the oxidative addition step in these systems
with the common palladium(0) catalysts employing aryl phos-
phine ligands proceed under relatively mild conditions. We and
others have also recently demonstrated the similar exploitation
of activated vinyl tosylates and mesylates as a substitute for
the corresponding triflates in the Heck reaction with vinyl
amides and ethers.26
Considerable efforts have been directed over the past few
years to increase the scope of these coupling reactions with
nonactivated alkenyl tosylates and phosphates, as well as the
complementary derivatives of phenols. Two approaches have
been adopted to overcome the challenging step of the catalytic
cycle represented by the oxidative addition into the C-O
bond: either Pd(0)-centered catalysts possessing bulky electron
rich phosphine ligands that facilitate the preliminary step of the
catalytic cycle have been applied21a,b,22d,h,23a-c,24a,25a,b or alterna-
tive more reactive transition metal systems such as Ni(0)
complexes were explored.21c,22a,b,e,j,l,m,23d-f In these difficult
cases, less attention has been devoted to the Heck reaction,
which may also be related to the dissimilarities in reaction
mechanisms between the different transition metal catalyzed
coupling reactions. For example, whereas Ni(0)-based catalyst
systems can promote Suzuki cross couplings between aryl and
vinyl tosylates or phosphates with aryl boronic acids under mild
(10) (a) Mo, J.; Xiao, J. Angew. Chem., Int. Ed. 2006, 45, 4152. (a) Datta, G.
K.; von Schenk, H.; Hallberg, A.; Larhed, M. J. Org. Chem. 2006, 71,
3896. (b) Pro¨ckl, S. S.; Kleist, W.; Gruber, M. A.; Ko¨hler, K. Angew. Chem.,
Int. Ed. 2004, 43, 1881. (c) Consorti, C. S.; Ebeling, G.; Flores, F. R.;
Rominger, F.; Dupont, J. AdV. Synth. Catal. 2004, 346, 617. (d) Schnyder,
A.; Aemmer, T.; Indolese, A. F.; Pittelkow, U.; Studer, M. AdV. Synth.
Catal. 2002, 344, 495. (e) Alonso, D. A.; Na´jera, C.; Pacheco, M. C. AdV.
Synth. Catal. 2002, 344, 172. (f) Djakovitch, L.; Koehler, K. J. Am. Chem.
Soc. 2001, 123, 5990. (g) Li, G. Y.; Zheng, G.; Noonan, A. F. J. Org.
Chem. 2001, 66, 8677. (h) Albe´niz, A. C.; Espinet, P.; Mart´ın-Ruiz, B.;
Milstein, D. J. Am. Chem. Soc. 2001, 123, 11504. (i) Ben-David, Y.;
Portnoy, M.; Gozin, M.; Milstein, D. Organometallics 1992, 11, 1995. (j)
Gruber, A. S.; Zim, D.; Ebeling, G.; Monteiro, A. L.; Dupont, J. Org. Lett.
2000, 2, 1287. (k) Morales-Morales, D.; Redo´n, R.; Yung, C.; Jensen, C.
M. Chem. Commun. 2000, 1619. (l) Reetz, M. T.; Lohmer, G.; Schwickardi,
R. Angew. Chem., Int. Ed. 1998, 37, 481.
(11) For some representative examples of the use of triflates in Heck reactions,
see: (a) Hansen, A. L.; Skrydstrup, T. J. Org. Chem. 2005, 70, 5997. (b)
Mo, J.; Xu, L.; Xiao, J. J. Am. Chem. Soc. 2005, 127, 751. (c) Vallin, K.
S. A.; Zhang, Q.; Larhed, M.; Curran, D. P.; Hallberg, A. J. Org. Chem.
2003, 68, 6639. (d) Nilsson, P.; Larhed, M.; Hallberg, A. J. Am. Chem.
Soc. 2001, 123, 8217. (e) Voigt, K.; von Zezschwitz, P.; Rosauer, K.;
Lansky, A.; Adams, A.; Reiser, O.; de Meijere, A. Eur. J. Org. Chem.
1998, 1521. (f) Cabri, W.; Candiani, I.; Bedeschi, A. J. Org. Chem. 1992,
57, 3558. (g) Scott, W. J.; Penˇa, M. R.; Swa¨rd, K.; Stoessel, S. J.; Stille,
J. K. J. Org. Chem. 1985, 50, 2302. (h) Cacchi, S.; Morera, E.; Ortar, G.
Tetrahedron Lett. 1984, 21, 2271.
(12) For examples of the use of nonaflates in the Heck reaction, see: (a)
Ho¨germeier, J.; Reiâig, H.-U.; Bru¨dgam, I.; Hartl, H. AdV. Synth. Catal.
2004, 346, 1868. (b) Lyapkalo, I. M.; Webel, M.; Reiâig, H.-U. Eur. J.
Org. Chem. 2002, 3646. (c) Lyapkalo, I. M.; Webel, M.; Reiâig, H.-U.
Eur. J. Org. Chem. 2001, 4189 (d) Rottla¨nder, M.; Knochel, P. J. Org.
Chem. 1998, 63, 203. (e) Bra¨se, S.; de Meijere, A. Angew. Chem., Int. Ed.
Engl. 1995, 34, 2545.
(13) For examples of decarboxylative Heck reactions, see: (a) Tanaka, D.;
Romeril, S. P.; Myers, A. G. J. Am. Chem. Soc. 2005, 127, 10323. (b)
Tanaka, D.; Myers, A. G. Org. Lett. 2004, 6, 433. (c) Myers, A. G.; Tanaka,
D.; Mannion, M. R. J. Am. Chem. Soc. 2002, 124, 11250.
(14) For examples of decarbonylative Heck reactions, see: (a) Andrus, M. B.;
Liu, J. Tetrahedron Lett. 2006, 47, 5811. (b) Andrus, M. B.; Liu, J. Angew.
Chem., Int. Ed. 2004, 43, 1095. (c) Groâen, L. J.; Paetzold, J. Angew.
Chem., Int. Ed. 2002, 41, 1237.
(15) For examples of Heck reactions with diazonium salts, see: (a) Roglans,
A.; Pla-Quintana, A.; Moreno-Man˜as, M. Chem. ReV. 2006, 106, 4622.
(b) Burtoloso, A. C. B.; Garcia, A. L. L.; Miranda, K. C.; Corriea, C. R.
D. Synlett 2006, 18, 3145. (c) Perez, R.; Veronese, D.; Coelho, F.; Antunes,
O. A. C. Tetrahedron Lett. 2006, 47, 1325. (d) Masllorens, J.; Bouquillon,
S.; Roglans, A.; He´nin, F.; Muzart, J. J. Organomet. Chem. 2005, 690,
3822. (e) Sabino, A. A.; Machado, A. H. L.; Correia, C. R. D.; Eberlin, M.
N. Angew. Chem., Int. Ed. 2004, 43, 2514. (f) Andrus, M. B.; Song, C.;
Zhang, J. Org. Lett. 2002, 4, 2079. (g) Selvakumar, K.; Zapf, A.;
Spannenberg, A.; Beller, M. Chem. Eur. J. 2002, 8, 3901.
(16) For examples of Heck reactions with anhydrides, see: (a) Lim, K.-C.; Hong,
Y.-T.; Kim, S. Synlett 2006, 12, 1851. (b) Gooâen, L. J.; Paetzold, J.;
Winkel, L. Synlett 2002, 10, 1721. (c) Shmidt, A. F.; Smirnov, V. V. Kinet.
Catal. 2002, 43, 195. (d) Tucker, C. E.; de Vries, J. G. Top. Catal. 2002,
1, 111. (e) Shmidt, A. F.; Smirnov, V. V. Kinet. Catal. 2000, 41, 743. (f)
Stephan, M. S.; Teunissen, A. J. J. M.; Verzijl, G. K. M.; de Vries, J. G.
Angew. Chem., Int. Ed. 1998, 37, 662.
(21) (a) Wiskur, S. L.; Korte, A.; Fu, G. C. J. Am. Chem. Soc. 2004, 126, 82.
(b) Zhou, J.; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 12527. (c) Wu, J.;
Yang, Z. J. Org. Chem. 2001, 66, 7875. (d) Nicolaou, K. C.; Shi, G.-Q.;
Namoto, K.; Bernal, F. Chem. Commun. 1998, 1757.
(22) (a) Hansen, A. L.; Ebran, J.-P.; Gøgsig, T. M.; Skrydstrup, T. Chem.
Commun. 2006, 4137. (b) Tang, Z.-Y.; Spinella, S.; Hu, Q.-S. Tetrahedron
Lett. 2006, 47, 2427. (c) Baxter, J. M.; Steinhuebel, D.; Palucki, M.; Davies,
I. W. Org. Lett. 2005, 7, 215. (d) Larsen, U. S.; Martiny, L.; Begtrup, M.
Tetrahedron Lett. 2005, 46, 4261. (e) Tang, Z.-Y.; Hu, Q.-S. J. Am. Chem.
Soc. 2004, 126, 3058. (f) Campbell, I. B.; Guo, J.; Jones, E.; Steel, P. G.
Org. Biomol. Chem. 2004, 2, 2725. (g) Nguyen, H. N.; Huang, X.;
Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 11818. (h) Netherton, M.
R.; Fu. G. C. Angew. Chem., Int. Ed. 2002, 41, 3190. (i) Wu, J.; Wang, L.;
Fathi, R.; Yang, Z. Tetrahedron Lett. 2002, 43, 4395. (j) Zim, D.; Lando,
V. R.; Dupont, J.; Monteiro, A. L. Org. Lett. 2001, 3, 3049. (k) Lepifre,
F.; Clavier, S.; Bouyssou, P.; Coudert, G. Tetrahedron 2001, 57, 6969. (l)
Nan, Y.; Yang, Z. Tetrahedron Lett. 1999, 40, 3321. (m) Percec, V.; Bae,
J.-Y.; Hill, D. H. J. Org. Chem. 1995, 60, 1060.
(17) For an example of a Heck reaction with telluronium salts, see: Hirabayashi,
K.; Nara, Y.; Shimizu, T.; Kamigata, N. Chem. Lett. 2004, 33, 1280.
(18) For examples of Heck reactions with aroyl chlorides, see: (a) Sugihara,
T.; Satoh, T.; Miura, M. Tetrahedron Lett. 2005, 46, 8269. (b) Sugihara,
T.; Satoh, T.; Miura, M.; Nomura, M. AdV. Synth. Catal. 2004, 346, 1765.
(c) Andrus, M. B.; Liu, J.; Meredith, L.; Nartey, E. Tetrahedron Lett. 2003,
44, 4819. (d) Sugihara, T.; Satoh, T.; Miura, M.; Nomura, M. Angew.
Chem., Int. Ed. 2003, 42, 4672.
(23) (a) Ackermann, L.; Althammer, A. Org. Lett. 2006, 8, 3457. (b) Limmert,
M. E.; Roy, A. H.; Hartwig, J. F. J. Org. Chem. 2005, 70, 9364. (c) Roy,
A. H.; Hartwig, J. F. J. Am. Chem. Soc. 2003, 125, 8704. (d) Baker, W.
R.; Pratt, J. K. Tetrahedron 1993, 39, 8739. (e) Hayashi, T.; Fujiwa, T.;
Okamoto, Y.; Katsuro, Y.; Kumada, M. Synthesis 1981, 1001. (f) Hayashi,
T.; Katsuro, Y.; Okamoto, Y.; Kumada, M. Tetrahedron Lett. 1981, 22,
4449.
(24) (a) Gelman, D.; Buchwald, S. L. Angew. Chem., Int. Ed. 2003, 42, 5993.
(b) Lo, Galbo, F.; Occhiato, E. G.; Guarna, A.; Faggi, C. J. Org. Chem.
2003, 68, 6360. (c) Fu, X.; Zhang, S.; Yin, J.; Schumacher, D. P.
Tetrahedron Lett. 2002, 43, 6673.
(19) For examples of desulfonylative Heck reactions, see: (a) Dubbaka, S. R.;
Vogel, P. Chem. Eur. J. 2005, 11, 2633. (b) Miura, M.; Hashimoto, H.;
Itoh, K.; Nomura, M. Tetrahedron Lett. 1989, 30, 975.
(20) (a) Steinhuebel, D.; Baxter, J. M.; Palucki, M.; Davies, I. W. J. Org. Chem.
2005, 70, 10124. (b) Jiang, J.; DeVita, R. J.; Doss, G. A.; Goulet, M. T.;
Wyvratt, M. J. J. Am. Chem. Soc. 1999, 121, 593. (c) Buon, C; Bouyssou,
P.; Coudert, G. Tetrahedron Lett. 1999, 40, 701. (d) Nicolaou, K. C.; Shi,
G.-Q.; Gunzner, J. L.; Ga¨rtner, P.; Yang, Z. J. Am. Chem. Soc. 1997, 119,
5467.
(25) (a) Klapars, A.; Campos, K. R.; Chen, C.; Volante, R. P. Org. Lett. 2005,
7, 1185. (b) Huang, X.; Anderson, K. W.; Zim, D.; Jiang, L.; Klapars, A.;
Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 6653.
(26) (a) Hansen, A. L.; Skrydstrup, T. Org. Lett. 2005, 7, 5585. (b) Fu, X.;
Zhang, S.; Yin, J.; McAllister, T. L.; Jiang, S. A.; Chou-Hong, T.;
Thiruvengadam, K.; Zhang, F. Tetrahedron Lett. 2002, 43, 573.
9
6932 J. AM. CHEM. SOC. VOL. 129, NO. 21, 2007