486
TITOV et al.
Table 2. Signals assignment in the 1H NMR spectrum (700 MHz) of I
Atom
Ha1
δ, ppm
2.39
1.50
1.91
1.32
2.20
1.24
1.74
Geminal constants, 2J, Hz
2J1a,P 12.3
Vicinal constants, 3J, Hz
3J1a,2(6)e 3.1–3.2, 3J1a,2(6)a 12.3
3J2a,3a 12.4, 3J2a,3e 3.5, 3J2a,P 12.4
3J2e,P 13.1, 3J2(6)e,1a 3.1–3.2
3J3a,2a 12.4, 3J3a,4a 12.4
Ha2,6
Hе2,6
Ha3,5
Hе3,5
Ha4
2J2a,2e 9.6
2J2a,2e 9.6
2J3a,3e 9.7
2J3a,3e 9.7
3J3е,2а 3.5, 3J3е,4а 3.4
2J4a,4e 12.4
3J4a,3a 12.4, 3J4a,3e 3.4
Hе4
2J4a,4e 12.4
ECX400A instrument. Hexamethyldisiloxane (HMDS)
was used as an internal reference for H NMR spectra.
Cyclohex-1-enylphosphonic dichloride (III). To a
solution of 10 g of II in 20 ml of anhydrous diethyl
ether was added a solution of 5 g of triethylamine in
10 ml of anhydrous diethyl ether at cooling. The
reaction mixture was kept for 0.5 h under cooling and
1 h at room temperature. Then triethylamine salt was
filtered off, the filtrate was concentrated and
fractionated. Fraction with bp 112–114°С (4 mm Hg)
was collected. Yield 4.4 g (52%), colorless liquid, bp
1
Phosphorus chemical shifts were determined relative to
external 85% phosphoric acid (Bruker AC-200) and
trimethylphosphate (Tesla BS-497). The 13C spectra
were taken relative to internal CDCl3 and DMSO-d6.
The standard laboratory techniques were used to purify
and dry the organic solvents and reagents [8–10].
A general procedure for the synthesis of
dichlorides (I, II). A reactor was charged with a
substrate and 5-fold excess of phosphorus trichloride.
Dry oxygen was passed through the reaction mixture
under stirring and cooling, while maintaining the
temperature below 15°C. As the exothermal process
completed, the formed POCl3 was removed, and the
residue was fractionated under the reduced pressure.
1
82–84°C (<1 mm Hg). Н NMR spectrum (400 MHz,
CDCl3), δН, ppm: 1.48–1.49 m (2Н, Н4), 1.56–1.59 m
2
(2Н, Н5), 2.13–2.14 m (4Н, Н3,6), 6.85 d (1Н, Н2, JHP
29.21 Hz). 13С NMR spectrum (50 MHz, CDCl3), δС,
ppm: 20.58 (С4), 21.46 d (С5, 3JСP 12.68 Hz), 23.41 d
(С3, 3JСP 11.93 Hz), 26.19 d (С6, 2JСP 20.74 Hz), 134.10
d (С1, 1JСP 135.63 Hz), 146.81 d (С2, 2JСP 9.06 Hz). 31Р
NMR spectrum (81 MHz, CDCl3): δР 36.08 ppm.
Cyclohexylphosphonic dichloride (I). Yield 21.6 g
(45%), colorless liquid, bp 104–106°C (4 mm Hg). Н
A general procedure for the synthesis of
difluorides (IV, V, VI). The corresponding dichlo-
rides (I, II, III) were distilled under the reduced
pressure over two-fold amount of the freshly calcined
ZnF2 followed by the repeated fractionating under the
reduced pressure.
1
NMR spectrum (400 MHz, CDCl3), δН, ppm: 1.11–
1.31 m (3Н, На4, На3,5), 1.37–1.39 m (2Н, На2,6), 1.65–
1.69 m (1Н, Не4), 1.81–1.88 m (2Н, Не2,6), 2.10–2.15 m
(2Н, Не3,5), 2.33 q.t (1Н, На1, JHP 11.60, 3JHH 2.80 Hz).
2
13С NMR spectrum (50 MHz, CDCl3), δС, ppm: 25.24
3
2
d (С3,5, JСP 4.63 Hz), 25.82 d (С2,6, JСP 10.17 Hz),
Cyclohexylphosphonic difluoride (IV). Yield 1.51 g
25.83 (С4), 50.95 d (С1, JСP 93.11 Hz). 31Р NMR
(59.8%), colorless liquid, bp 57–59°C (4 mm Hg). Н
1
1
spectrum (81 MHz, CDCl3): δР 56.94 ppm.
NMR spectrum (400 MHz, CDCl3), δН, ppm: 1.06–
1.20 m (3Н, На4, На3,5), 1.26–1.37 m (2Н, На2,6), 1.53–
1.56 m (1Н, Не4), 1.62–1.72 m (2Н, Не2,6), 1.85 t (2Н,
2-Chlorocyclohexylphosphonic dichloride (II).
Yield 30.1 g (42%), colorless liquid, bp 115–116°C
Не3,5, JHH 8.80 Hz), 1.95–2.08 m (1Н, На1). 13С NMR
2
1
(<1 mm Hg). Н NMR spectrum (400 MHz, CDCl3),
spectrum (50 MHz, CDCl3), δС, ppm: 24.62–25.14 m
δН, ppm: 1.34–1.38 m (2Н, Н4), 1.64–2.02 m (4Н,
Н5,6), 2.69–2.85 m (1Н, Н1), 4.23–4.30 m (1Н, Н2). 13С
NMR spectrum (50 MHz, CDCl3), δС, ppm: 23.49
1
2
(С2–6), 32.89 d.t (С1, JСP 139.16, JСF 15.10 Hz). 31Р
NMR spectrum (81 MHz, CDCl3), δР, ppm: 25.67 t
(1JPF 1156.01 Hz). 19F NMR spectrum (376 MHz,
CDCl3), δF, ppm: 99.87 d (1JFР 1156.01 Hz).
3
(С4), 23.73 (С5), 26.06 d (С3, JСP 4.29 Hz), 35.87 d
2
1
(С6, JСP 11.02 Hz), 56.42 (С2), 57.45 d (С1, JСP
77.71 Hz). 31Р NMR spectrum (81 MHz, CDCl3): δР
49.93 ppm.
2-Chlorocyclohexylphosphonic difluoride (V).
Yield 2.56 g (59%), colorless liquid, bp 65–67°C
RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 81 No. 3 2011