L. Xu, N. P. J. Price / Carbohydrate Research 339 (2004) 1173–1178
1177
Alpine-Boraneâ in THF (6 mL, 3 mmol). The reaction
mixture was stirred at room temperature until 5 was not
detected by mass spectrometry (usually 24 h). Acetal-
dehyde was added to quench the excess Alpine-Boraneâ.
After the solution was stirred for 1 h, the solvent was
evaporated in vacuo, and the residue was redissolved in
THF (20 mL). To the solution were added 3 M NaOH
(20 mL) and 30% H2O2 (20 mL). The solution was stir-
red for 1 h, and THF was removed in vacuo. The
aqueous solution was extracted with CH2Cl2. Following
removal of CH2Cl2 the residue was chromatographed on
a silica gel column using 60:40 hexane–EtOAc and fol-
lowed by a preparative reversed-phase C18 column with
68:32 MeOH–water as eluent to give 6 (425 mg,
3.7. Methyl (6S)-a-D
-(6-2H1)glucopyranoside (8)
To a solution of 6 (360 mg, 0.77 mmol) in EtOH (40 mL)
was added 200 mg of 10% (w/w) palladium-on-charcoal
catalyst. The solution was stirred under hydrogen
atmosphere (1 L H2 balloon) for 24 h. The reaction
mixture was filtered, and filtrate was concentrated in
vacuo. The residue was passed through a Sephadex LH-
20 column with MeOH as eluent to yield 8 (138 mg,
25
D
0.71 mmol); ½a
+158° (c 1.1, H2O); 1H NMR
(CD3OD, 400 MHz): d 3.28 (dd, 1H, J3;4 8.85, J4;5
9.82 Hz, H-4), 3.37 (s, 3H, OCH3), 3.40 (dd, 1H, J1;2
3.74, J2;3 9.64 Hz, H-2), 3.50 (dd, 1H, J4;5 9.82, J5;6 5.57,
H-5), 3.59 (t, J2;3 9.64, J3;4 8.85 Hz, H-3), 3.64 (d, J5;6
5.57, H-6R), 4.65 (d, 1H, J1;2 3.74 Hz, H-1); 13C NMR
(CD3OD, 100 MHz): d 55.5 (OCH3), 62.3 (t, JC–D
21.1 Hz, C-6), 71.6 (C-4), 73.3 (C-5), 73.4 (C-2), 75.0 (C-
25
1
0.91 mmol) in 90% yield; ½a +18.5° (c 1.2, CHCl3); H
D
NMR (CDCl3, 400 MHz): d 3.36 (s, 3H, OCH3), 3.50
(dd, 1H, J1;2 3.54, J2;3 9.26 Hz, H-2), 3.52 (t, 1H,
J3;4 ¼ J4;5 9.46 Hz, H-4), 3.64 (dd, 1H, J4;5 9.46, J5;6
4.05 Hz, H-5), 3.67 (d, 1H, J5;6 4.05 Hz, H-6R), 4.01 (dd,
1H, J2;3 9.26, J3;4 9.46 Hz, H-3), 4.56 (d, 1H, J1;2 3.54 Hz,
H-1), 4.64 (d, 1H, J4a;4b 11.0 Hz, H-4a-Bn), 4.67 (d, 1H,
J3a;3b 12.0 Hz, H-3a-Bn), 4.81 (d, 1H, J3a;3b 12.0 Hz,
H-3b-Bn), 4.84 (d, 1H, J2a;2b 11.0 Hz, H-2a-Bn), 4.89 (d,
1H, J4a;4b 11.0 Hz, H-4b-Bn), 4.99 (d, 1H, J2a;2b 11.0 Hz,
H-2b-Bn), 7.27–7.38 (Ph); 13C NMR (CDCl3, 100 MHz):
d 55.1 (OCH3), 61.5 (t, JC–D 21.6 Hz, C-6), 70.5 (C-5),
73.4 (C-2ab), 75.0 (C-4ab), 75.7 (C-3ab), 77.0 (C-4), 79.9
(C-2), 81.9 (C-3), 98.1 (C-1), 127.6 (Ph), 127.8 (Ph),
127.9 (Ph), 128.0 (Ph), 128.1 (Ph), 128.4 (Ph),128.5 (Ph),
2
3), 101.1 (C-1); H NMR (CD3OD, 61.4 MHz): d 3.60
(s, 2H6, S); electrospray-ion trap-MS: calcd for
C7H132HO6: m=z 195. Found: m=z 196 [M+H]þ, 218
[M+Na]þ.
3.8. (6S)-D
-(6-2H1)Glucose (9)
Compound 8 (396 mg, 2.02 mmol) was dissolved in 1 M
HCl (70 mL) and heated at 80 °C for 12 h. The reaction
mixture was cooled to room temperature and neutral-
ized with Amberlite IRA-67 resin. The solution was
filtered, and the filtrate was concentrated in vacuo. The
residue was chromatographed on Sephadex LH-20 with
MeOH as eluent to yield 9 (312 mg, 1.72 mmol) as a
2
138.1 (Ph), 138.7 (Ph); H NMR (CDCl3, 61.4 MHz):
2
d 3.77 (s, H-6, S); electrospray-ion trap-MS: calcd for
25
C28H312HO6: m/z 465. Found: m=z 466 [M+H]þ, 488
white solid; ½a +55° (c 1.2, H2O); H NMR (D2O–
1
D
[M+Na]þ.
acetone-d6 400 MHz): d 3.15 (t, 1H, J1;2 ¼ J2;3 7.94 Hz,
H-2b), 3.28 (m, 1H, H-4a), 3.29 (m, 1H, H-4b), 3.35 (m,
1H, H-3b), 3.36 (m, 1H, H-5b), 3.43 (dd, 1H, J1;2 3.38,
J2;3 10.0 Hz, H-2a), 3.61 (d, 1H, H-6b), 3.62 (m, 1H,
H-3a), 3.65 (d, 1H, J5;6 3.70 Hz, H-6a), 3.74 (dd, 1H, J4;5
10.0, J5;6 3.70 Hz, H-5a), 4.55 (d, 1H, J1;2 7.94 Hz, H-1b),
5.14 (d, 1H, J1;2 3.38 Hz, H-1a); 13C NMR (D2O–ace-
tone-d6 100 MHz): d 60.5 (t, JC–D 22 Hz, C-6a), 60.8 (t,
JC–D 22 Hz, C-6b), 69.9 (C-4a), 69.9 (C-4b), 71.6 (C-5a),
71.7 (C-2a), 73.0 (C-3a), 74.4 (C-2b), 76.0 (C-3b), 76.1
(C-5b), 92.3 (C-1a), 96.1 (C-1b); electrospray-ion trap-
MS: calcd for C6H112HO6: m/z 181. Found: m=z 182
[M+H]þ, 204 [M+Na]þ.
3.6. Methyl 2,3,4-tri-O-benzyl-b-
-(6S)-(6-2H1)gluco-
pyranoside (7)
D
Compound 7 was synthesized as described above for 6;
25
D
½a +8.2° (c 1.2, CHCl3); 1H NMR (CDCl3, 400 MHz):
d 3.37 (dd, 1H, J4;5 9.6, J5;6 4.6 Hz, H-5), 3.40 (dd, 1H,
J1;2 7.8, J2;3 9.1 Hz, H-2), 3.57 (s, 3H, OCH3), 3.58 (dd,
1H, J3;4 9.1, J4;5 9.6 Hz, H-4), 3.67 (t, 1H, J2;3 ¼ J3;4
9.1 Hz, H-3), 3.71 (d, 1H, J5;6 4.6 Hz, H-6R), 4.36 (d, 1H,
J1;2 7.8 Hz, H-1), 4.64 (d, 1H, J 10.9 Hz, H-4a-Bn), 4.71
(d, 1H, J 10.9 Hz, H-2a-Bn), 4.81 (d, 1H, J 10.9 Hz, H-
3a-Bn), 4.87 (d, 1H, J 10.9 Hz, H-4b-Bn), 4.91 (d, 1H, J
10.9 Hz, H-2b-Bn), 4.94 (d, 1H, J 10.9 Hz, H-3b-Bn),
7.26–7.34 (Ph); 13C NMR (CDCl3, 100 MHz): d 57.3
(OCH3), 61.7 (t, JC–D 22 Hz, C-6), 74.8 (C-4ab), 74.9 (C-
5), 75.1 (C-2ab), 75.7 (C-3ab), 77.5 (C-4), 82.3 (C-2),
84.4 (C-3), 104.8 (C-1), 127.6 (Ph), 127.7 (Ph), 127.8
(Ph), 127.9 (Ph), 128.1 (Ph), 128.4 (Ph), 128.5 (Ph), 137.9
(Ph), 138.4 (Ph), 138.5 (Ph); 2H NMR (CDCl3,
Acknowledgements
We wish to thank Dr. Sandip Sur (Dept. of Chemistry,
University of Rochester) for assistance in obtaining the
400 MHz spectra, Dr. M. W. Anders (Dept. Pharma-
cology and Physiology, University of Rochester) for the
^ ꢀ
use of the Agilent LC-ESI-MS, and Dr. Greg Cote
(NCAUR–USDA, Peoria, IL) for preliminary reviewing
the manuscript.
2
61.4 MHz): d 3.87 (s, H-6, S); electrospray-ion trap-
MS: calcd for C28H312HO6: m=z 465. Found: m=z 466
[M+H]þ, 488 [M+Na]þ.