Journal of the American Chemical Society
Article
Several Carbon−Carbon Bonds in Acyclic Systems. Chem. Rev. 2015,
115, 9175.
Ibex, Shaheen 2 High Performance Computing Facilities was
provided with financial support from KAUST.
(4) For selected reviews on the preparation of organofluorine
compounds, see: (a) Gong, Y.; Kato, K. Recent Applications of
Trifluoroacetaldehyde Ethyl Hemiacetal for the Synthesis of
Trifluoromethylated Compounds. Curr. Org. Chem. 2004, 8, 1659.
(b) Cahard, D.; Xu, X.; Couve-Bonnaire, S.; Pannecoucke, X. Fluorine
& chirality: how to create a nonracemic stereogenic carbon−fluorine
centre? Chem. Soc. Rev. 2010, 39, 558. (c) Nie, J.; Guo, H.-C.; Cahard,
D.; Ma, J.-A. Asymmetric Construction of Stereogenic Carbon
Centers Featuring a Trifluoromethyl Group from Prochiral Trifluor-
omethylated Substrates. Chem. Rev. 2011, 111, 455. (d) Furuya, T.;
Kamlet, A. S.; Ritter, T. Catalysis for fluorination and trifluorome-
thylation. Nature 2011, 473, 470. (e) Besset, T.; Schneider, C.;
Cahard, D. Tamed Arene and Heteroarene Trifluoromethylation.
Angew. Chem., Int. Ed. 2012, 51, 5048. (f) Studer, A. A “Renaissance”
in Radical Trifluoromethylation. Angew. Chem., Int. Ed. 2012, 51,
8950. (g) Liang, T.; Neumann, C. N.; Ritter, T. Introduction of
Fluorine and Fluorine-Containing Functional Groups. Angew. Chem.,
Int. Ed. 2013, 52, 8214. (h) Campbell, M. G.; Ritter, T. Modern
Carbon−Fluorine Bond Forming Reactions for Aryl Fluoride
Synthesis. Chem. Rev. 2015, 115, 612. (i) Xu, X.-H.; Matsuzaki, K.;
Shibata, N. Synthetic Methods for Compounds Having CF3−S Units
on Carbon by Trifluoromethylation, Trifluoromethylthiolation,
Triflylation, and Related Reactions. Chem. Rev. 2015, 115, 731.
(j) Yang, X.; Wu, T.; Phipps, R. J.; Toste, F. D. Advances in Catalytic
Enantioselective Fluorination, Mono-, Di-, and Trifluoromethylation,
and Trifluoromethylthiolation Reactions. Chem. Rev. 2015, 115, 826.
(k) Alonso, C.; Martinez de Marigorta, E.; Rubiales, G.; Palacios, F.
Carbon Trifluoromethylation Reactions of Hydrocarbon Derivatives
and Heteroarenes. Chem. Rev. 2015, 115, 1847.
(5) For recent reviews on catalytic enantioselective alcohol-mediated
carbonyl reductive coupling, see: (a) Ketcham, J. M.; Shin, I.;
Montgomery, T. P.; Krische, M. J. Catalytic Enantioselective C−H
Functionalization of Alcohols by Redox-Triggered Carbonyl Addition:
Borrowing Hydrogen, Returning Carbon. Angew. Chem., Int. Ed. 2014,
53, 9142. (b) Nguyen, K. D.; Park, B. Y.; Luong, T.; Sato, H.; Garza,
V. J.; Krische, M. J. Metal-catalyzed reductive coupling of olefin-
derived nucleophiles: Reinventing carbonyl addition. Science 2016,
354, 300. (c) Kim, S. W.; Zhang, W.; Krische, M. J. Catalytic
Enantioselective Carbonyl Allylation and Propargylation via Alcohol-
Mediated Hydrogen Transfer: Merging the Chemistry of Grignard
and Sabatier. Acc. Chem. Res. 2017, 50, 2371.
(6) For catalytic enantioselective formation of acyclic quaternary
carbon stereocenters via alcohol-mediated carbonyl reductive
coupling, see: (a) Feng, J.; Garza, V. J.; Krische, M. J. Redox-
Triggered C−C Coupling of Alcohols and Vinyl Epoxides: Diastereo-
and Enantioselective Formation of All-Carbon Quaternary Centers via
tert-(Hydroxy)-Prenylation. J. Am. Chem. Soc. 2014, 136, 8911.
(b) Nguyen, K. D.; Herkommer, D.; Krische, M. J. Enantioselective
Formation of All-Carbon Quaternary Centers via C−H Functional-
ization of Methanol: Iridium-Catalyzed Diene Hydrohydroxymethy-
lation. J. Am. Chem. Soc. 2016, 138, 14210. (c) Holmes, M.; Nguyen,
K. D.; Schwartz, L. A.; Luong, T.; Krische, M. J. Enantioselective
Formation of CF3-Bearing All-Carbon Quaternary Stereocenters via
C−H Functionalization of Methanol: Iridium Catalyzed Allene
Hydrohydroxymethylation. J. Am. Chem. Soc. 2017, 139, 8114.
(7) Pye, P. J.; Rossen, K.; Reamer, R. A.; Tsou, N. N.; Volante, R. P.;
Reider, P. J. A New Planar Chiral Bisphosphine Ligand for
Asymmetric Catalysis: Highly Enantioselective Hydrogenations
under Mild Conditions. J. Am. Chem. Soc. 1997, 119, 6207.
(8) For a review on the use of paraformaldehyde and methanol as
C1 feedstocks in metal-catalyzed C−C coupling, see: Sam, B.; Breit,
B.; Krische, M. J. Paraformaldehyde and Methanol as C1 Feedstocks
in Metal-Catalyzed C−C Couplings of π-Unsaturated Reactants:
Beyond Hydroformylation. Angew. Chem., Int. Ed. 2015, 54, 3267.
(9) For late-transition-metal-catalyzed allene−carbonyl and allene−
imine reductive coupling, see: Nickel: (a) Ng, S.-S.; Jamison, T. F.
Highly Enantioselective and Regioselective Nickel-Catalyzed Cou-
REFERENCES
■
(1) For recent reviews on the enantioselective formation of
quaternary carbon stereocenters, see: (a) Das, J. P.; Marek, I.
Enantioselective synthesis of all-carbon quaternary stereogenic centers
in acyclic systems. Chem. Commun. 2011, 47, 4593. (b) Minko, Y.;
Marek, I. Stereodefined acyclic trisubstituted metal enolates towards
the asymmetric formation of quaternary carbon stereocentres. Chem.
Commun. 2014, 50, 12597. (c) Marek, I.; Minko, Y.; Pasco, M.;
Mejuch, T.; Gilboa, N.; Chechik, H.; Das, J. P. All-Carbon Quaternary
Stereogenic Centers in Acyclic Systems through the Creation of
Several C−C Bonds per Chemical Step. J. Am. Chem. Soc. 2014, 136,
2682. (d) Quasdorf, K. W.; Overman, L. E. Catalytic enantioselective
synthesis of quaternary carbon stereocentres. Nature 2014, 516, 181.
(e) Liu, Y.; Han, S.-J.; Liu, W.-B.; Stoltz, B. M. Catalytic
Enantioselective Construction of Quaternary Stereocenters: Assembly
of Key Building Blocks for the Synthesis of Biologically Active
Molecules. Acc. Chem. Res. 2015, 48, 740. (f) Zeng, X.-P.; Cao, Z.-Y.;
Wang, Y.-H.; Zhou, F.; Zhou, J. Catalytic Enantioselective
Desymmetrization Reactions to All-Carbon Quaternary Stereocenters.
Chem. Rev. 2016, 116, 7330. (g) Feng, J.; Holmes, M.; Krische, M. J.
Acyclic Quaternary Carbon Stereocenters via Enantioselective
Transition Metal Catalysis. Chem. Rev. 2017, 117, 12564.
(2) For selected examples of the enantioselective metal-catalyzed
formation of acyclic quaternary carbon stereocenters, see: (a) Sawa-
mura, M.; Sudoh, M.; Ito, Y. An Enantioselective Two-Component
Catalyst System: Rh−Pd-Catalyzed Allylic Alkylation of Activated
Nitriles. J. Am. Chem. Soc. 1996, 118, 3309. (b) Zhang, A.; RajanBabu,
T. V. All-Carbon Quaternary Centers via Catalytic Asymmetric
Hydrovinylation. New Approaches to the Exocyclic Side Chain
Stereochemistry Problem. J. Am. Chem. Soc. 2006, 128, 5620.
(c) Krautwald, S.; Sarlah, D.; Schafroth, M. A.; Carreira, E. M.
Enantio- and Diastereodivergent Dual Catalysis: α-Allylation of
Branched Aldehydes. Science 2013, 340, 1065. (d) Zhang, C.;
Santiago, C. B.; Crawford, J. M.; Sigman, M. S. Enantioselective
Dehydrogenative Heck Arylations of Trisubstituted Alkenes with
Indoles to Construct Quaternary Stereocenters. J. Am. Chem. Soc.
2015, 137, 15668. (e) Zhou, Q.; Cobb, K. M.; Tan, T.; Watson, M. P.
Stereospecific Cross Couplings To Set Benzylic, All-Carbon
Quaternary Stereocenters in High Enantiopurity. J. Am. Chem. Soc.
2016, 138, 12057. (f) Patel, H. H.; Sigman, M. S. Enantioselective
Palladium-Catalyzed Alkenylation of Trisubstituted Alkenols To
Form Allylic Quaternary Centers. J. Am. Chem. Soc. 2016, 138,
14226. (g) Ohmiya, H.; Zhang, H.; Shibata, S.; Harada, A.;
Sawamura, M. Construction of Quaternary Stereogenic Carbon
Centers through Copper-Catalyzed Enantioselective Allylic Alkylation
of Azoles. Angew. Chem., Int. Ed. 2016, 55, 4777. (h) Cruz, F. A.;
Dong, V. M. Stereodivergent Coupling of Aldehydes and Alkynes via
Synergistic Catalysis Using Rh and Jacobsen’s Amine. J. Am. Chem.
Soc. 2017, 139, 1029. (i) Hojoh, K.; Ohmiya, H.; Sawamura, M.
Synthesis of α-Quaternary Formimides and Aldehydes through
Umpolung Asymmetric Copper Catalysis with Isocyanides. J. Am.
Chem. Soc. 2017, 139, 2184. (j) Starkov, P.; Moore, J. T.; Duquette,
D. C.; Stoltz, B. M.; Marek, I. Enantioselective Construction of
Acyclic Quaternary Carbon Stereocenters: Palladium-Catalyzed
Decarboxylative Allylic Alkylation of Fully Substituted Amide
Enolates. J. Am. Chem. Soc. 2017, 139, 9615. (k) Shockley, S. E.;
Hethcox, J. C.; Stoltz, B. M. Enantioselective Synthesis of Acyclic α-
Quaternary Carboxylic Acid Derivatives through Iridium-Catalyzed
Allylic Alkylation. Angew. Chem., Int. Ed. 2017, 56, 11545. (l) Fujita,
T.; Yamamoto, T.; Morita, Y.; Chen, H.; Shimizu, Y.; Kanai, M.
Chemo- and Enantioselective Pd/B Hybrid Catalysis for the
Construction of Acyclic Quaternary Carbons: Migratory Allylation
of O-Allyl Esters to α-C-Allyl Carboxylic Acids. J. Am. Chem. Soc.
2018, 140, 5899.
(3) For a recent review on the formation of acyclic stereopolyads,
see: Eppe, G.; Didier, D.; Marek, I. Stereocontrolled Formation of
H
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX