ORGANIC
LETTERS
2004
Vol. 6, No. 11
1761-1763
Highly Effective Synthetic Methods for
Substituted 2-Arylbenzofurans Using
[3,3]-Sigmatropic Rearrangement: Short
Syntheses of Stemofuran A and
Eupomatenoid 6
Okiko Miyata, Norihiko Takeda, and Takeaki Naito*
Kobe Pharmaceutical UniVersity, Motoyamakita, Higashinada, Kobe 658-8558, Japan
Received March 9, 2004
ABSTRACT
A new and efficient synthesis of 2-arylbenzofurans has been achieved via a route involving acylation and subsequent [3,3]-sigmatropic
rearrangement of oxime ethers. Its synthetic utility is demonstrated by a short synthesis of stemofuran A and eupomatenoid 6 in which no
procedure for protection of the phenolic hydroxyl groups is needed.
Benzo[b]furans carrying functional groups are attractive tar-
gets of organic synthesis because of their biological activity
and their wide occurrence in nature.1 As a consequence, there
has been growing interest in developing general and versatile
synthetic methods for benzofuran derivatives.2 Some 2-aryl-
benzofurans are inhibitors of cell proliferation and platelet-
activating factor, and some of them show good fungicidal,
insecticidal, and cytotoxic activities.1j-l Therefore, 2-aryl-
benzofurans have been a new subject of synthetic studies
for the development of biologically active compounds.3
We have now developed a new preparative route to
2-arylbenzofurans 1 using the successive reactions of oxime
ethers. The route involves acylation, [3,3]-sigmatropic rear-
rangement, and intramolecular cyclization reactions.4 Fur-
thermore, this method was successively applied to the short
synthesis of stemofuran A 25 and eupomatenoid 6 3,6 the
latter of which has shown antifungal, insecticidal, and anti-
oxidant activities (Figure 1).
We first investigated the substituent effects in the reaction
of oxime ethers 4, prepared by condensation of O-phenyl-
(2) (a) Friedrichsen, W. In ComprehensiVe Heterocyclic Chemistry II;
Bird, C. W., Katritzky, A. R., Rees, C. W, Scriven, E. F. V., Eds.;
Pergamon: London, 1996; Vol. 2, Chapter 2.7, pp 368-378. (b) Baker, S.
R.; Cases, M.; Keenan, M.; Lewis, R. A.; Tan, P. Tetrahedron Lett. 2003,
44, 2995-2999. (c) Dahle´n, A.; Petersson, A.; Hilmersson, G. Org. Biomol.
Chem. 2003, 1, 2423-2426. (d) McKiernan, G. J.; Hartley, R. C. Org. Lett.
2003, 5, 4389-4392. (e) Serra, S.; Fuganti, C. Synlett 2003, 2005-2008.
(3) (a) Bates, C. G.; Saejueng, P.; Murphy, J. M.; Venkataraman, D.
Org. Lett. 2002, 4, 4727-4729. (b) Kraus, G. A.; Zhang, N.; Verkade, J.
G.; Nagarajan, M.; Kisanga, P. B. Org. Lett. 2000, 2, 2409-2410. (c) Akai,
S.; Morita, N.; Iio, K.; Nakamura, Y.; Kita, Y. Org. Lett. 2000, 2, 2279-
2282.
(1) (a) Trost, B. M.; Tang, W. Angew. Chem., Int. Ed. 2002, 41, 2795-
2797. (b) Hamilton, C. J.; Fairlamb, A. H.; Eggleston, I. M. J. Chem. Soc.,
Perkin Trans. 1 2002, 1115-1123. (c) Li, J.; Jeong, S.; Esser, L.; Harran,
P. G. Angew. Chem., Int. Ed. 2001, 40, 4765-4770. (d) Li, J.; Burgett, A.
W. G.; Esser, L.; Amezcua, C.; Harran, P. G. Angew. Chem., Int. Ed. 2001,
40, 4770-4773. (e) Hughes, C. C.; Trauner, D. Angew. Chem., Int. Ed.
2002, 41, 1569-1572. (f) Patil, A. D.; Freyer, A. J.; Killmer, L.; Offen, P.;
Carte, B.; Jurewicz, A. J.; Johnson, R. K. Tetrahedron 1997, 53, 5047-
5060. (g) Kurosawa, W.; Kan, T.; Fukuyama, T. J. Am. Chem. Soc. 2003,
125, 8112-8113. (h) Tamada, M.; Endo, K.; Hikino, H.; Kabuto, C.
Tetrahedron Lett. 1979, 873-876. (i) Muhammad, I.; Li, X.-C.; Jacob, M.
R. Tekwani, B. L.; Dunbar, D. C.; Ferreira, D. J. Nat. Prod. 2003, 66,
804-809. (j) Ward, R. S. Nat. Prod. Rep. 1993, 10, 1-28. (k) Ward R. S.
Nat. Prod. Rep. 1995, 12, 183-205. (l) Ward, R. S. Nat. Prod. Rep. 1997,
14, 43-74.
(4) Miyata, O.; Takeda, N.; Morikami, Y.; Naito, T. Org. Biomol. Chem.
2003, 1, 254-256.
(5) Pacher, T.; Seger, C.; Engelmeier, D.; Vajrodaya, S.; Hofer, O.;
Greger, H. J. Nat. Prod. 2002, 65, 820-827.
10.1021/ol049564o CCC: $27.50 © 2004 American Chemical Society
Published on Web 04/23/2004