Organic Letters
Letter
Kameyama, A.; Sashida, Y.; Hirano, T.; Oka, K.; Dobashi, A.; Koike,
K.; Nikaido, T. Bioorg. Med. Chem. Lett. 1996, 6, 2635−2638.
(c) Mimaki, Y.; Kuroda, M.; Sashida, Y.; Hirano, T.; Oka, K.; Dobashi,
A.; Koshino, H.; Uzawa, J. Tetrahedron Lett. 1996, 37, 1245−1248.
(d) Kuroda, M.; Mimaki, Y.; Sashida, Y.; Hirano, T.; Oka, K.; Dobashi,
A.; Li, H.-y.; Harada, N. Tetrahedron 1997, 53, 11549−11562.
(e) Kuroda, M.; Mimaki, Y.; Sashida, Y. Phytochemistry 1999, 52,
435−443.
(3) Mimaki, Y.; Kuroda, M.; Sashida, Y.; Yamori, T.; Tsuruo, T. Helv.
Chim. Acta 2000, 83, 2698−2704.
(4) (a) Tang, P.; Yu, B. Angew. Chem., Int. Ed. 2007, 46, 2527−2530.
(b) Tang, P.; Yu, B. Eur. J. Org. Chem. 2009, 2009, 259−269.
(5) (a) Majetich, G.; Wheless, K. Tetrahedron 1995, 51, 7095−7129.
(b) Reese, P. B. Steroids 2001, 66, 481−497. (c) Cekovic, Z.
Tetrahedron 2003, 59, 8073−8090.
(6) (a) Shi, Y.; Jia, L.-Q.; Xiao, Q.; Lan, Q.; Tang, X.-H.; Wang, D.-
H.; Li, M.; Ji, Y.; Zhou, T.; Tian, W.-S. Chem.Asian J. 2011, 6, 786−
790. (b) Gui, J.; Wang, D.; Tian, W. Angew. Chem., Int. Ed. 2011, 50,
7093−7096.
(7) Our experience suggests that C20(S)-OH is more suitable for
C18-Me remote functionalization than its C20(R)-OH counterpart,
owing to the faster reaction rate and higher yield (see ref 6).
(8) Julian, P. L.; Meyer, E. W.; Ryden, I. J. Am. Chem. Soc. 1950, 72,
367−370.
(9) By employing pyridine as the base instead of KOAc in the 3,5-
cyclo-6-methoxy-forming step, our procedure eliminates the gener-
ation of the 3,5-cyclo-6-acetoxy compound as a side product, which is
difficult to remove from 16.
(10) (a) Corey, E. J.; Bakshi, R. K.; Shibata, S. J. Am. Chem. Soc.
1987, 109, 5551−5553. (b) Corey, E. J.; Helal, C. J. Angew. Chem., Int.
Ed. 1998, 37, 1986−2012.
(11) Heusler, K.; Wieland, P.; Meystre, C. Org. Synth. 1965, 45, 57−
63.
(12) Jones oxidation was frequently performed after the remote
funtionalization of the C18-Me group to give a lactone in good yield.
As in our case, 3,5-cyclo-6-methoxy protection of the AB ring is acid-
labile and cannot survive Jones oxidation, so direct reduction of the
intermediate 19 was investigated.
(13) Betancor, C.; Freire, R.; Per
Tetrahedron 2005, 61, 2803−2814.
́ ́ ́
ez-Martín, I.; Prange, T.; Suarez, E.
(14) The outcome of the selective esterification of the C18-OH
group in 14 was unstable. We found that Dess-Martin oxidation of the
unwanted C20-OH protected byproduct also provided the desired
ketone 20 in 50% yield which might be caused by the shift of the
bromoacetyl group from C20-OH to C18-OH. So direct oxidation of
the crude product in esterification step gave an reasonable yield of
ketone 20.
(15) (a) Molander, G. A.; Harris, C. R. Chem. Rev. 1996, 96, 307−
338. (b) Edmonds, D. J.; Johnston, D.; Procter, D. J. Chem. Rev. 2004,
104, 3371−3404.
(16) (a) Molander, G. A.; Kenny, C. J. Org. Chem. 1988, 53, 2132−
2134. (b) Carroll, G. L.; Little, R. D. Org. Lett. 2000, 2, 2873−2876.
(c) Hamon, S.; Birlirakis, N.; Toupet, L.; Arseniyadis, S. Eur. J. Org.
Chem. 2005, 2005, 4082−4092. (d) Ogawa, Y.; Kuroda, K.; Matsuo, J.-
I.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 2005, 78, 677−697.
(e) Nicolaou, K. C.; Ellery, S. P.; Chen, J. S. Angew. Chem., Int. Ed.
2009, 48, 7140−7165.
(17) Hydrogenation with NaBH4/NiCl2 gave a 1/1 mixture of 20(S)-
and 20(R)-epimers. The high stereoselectivity of the Pd/C catalyzed
hydrogenation was realized in a substatrate-controlled manner. The
catalyst approached the double bond from the less hindered convex
face.
(18) Dess−Martin, Swern, and Parikh−Doering oxidations only
provided aldehyde 10 in less than 20% yield.
D
Org. Lett. XXXX, XXX, XXX−XXX