S. Pulla et al. / Journal of Molecular Catalysis A: Chemical 338 (2011) 33–43
43
alyst by –OH. The mechanistic study indicates that Sna activates
–OH and Snb activate –O–CO– of a preformed ethylcarbamate from
2AA and DEC. Phenyl substituents reduce the catalytic activity by
shortening the Sn–Cl bond and the influence is most prominent
when attached to the terminal Sna atom of the catalyst. Polar-
ity differences between substrate and catalyst facilitate an easy
separation and recovery for further recycling. As the catalyst is
almost fully recoverable and preparation of the catalyst is quan-
titative with respect to their starting materials, contamination of
the product and the environment is merely negligible. Neverthe-
less, while triorganotin compounds are known to be toxic, there
is no such toxicity is reported so far for tetraorganodistannox-
ane compounds. The findings as a whole provide a broad way of
synthesizing OXZs while retaining their chirality. Depending upon
the need, one can design the process for practical feasibility with-
out separating the catalyst. Consequently, overall the process has
promise to contribute economically as well as environmentally.
[20] J.R. Gage, D.A. Evans, Org. Synth. Coll. Vol. 8 (1993) 528;
J.R. Gage, D.A. Evans, Org. Synth. Coll. Vol. 68 (1990) 77.
[21] M. Kottenhahn, K. Drauz, H. Hilpert, US Patent, 5,744,611 April (1998).
[22] D.A. Evans, A.E. Weber, J. Am. Chem. Soc. 108 (1986) 6757.
[23] L.F. Xiao, L.W. Xu, C.G. Xia, Green Chem. 9 (2007) 369.
[24] J. Otera, J. Nishikido, Esterification: Methods, Reactions and Applications, 2nd
ed., Wiley–VCH, 2009.
[25] H. Takahashi, T. Hayakawa, M. Ueda, Chem. Lett. (2000) 684.
[26] R.P. Houghton, A.W. Mulvaney, J. Organomet. Chem. 517 (1996) 107.
[27] A. Nishio, A. Mochizuki, J.I. Sugiyama, K. Takeuchi, M. Asai, K. Yonetake, M. Ueda,
J. Polym. Sci., Part A: Polym. Chem. 39 (2001) 416.
[28] R. Nagahata, J.I. Sugiyama, M. Goyal, M. Asai, M. Ueda, K. Takeuchi, J. Poly. Sci.,
Part A: Polym. Chem. 38 (2000) 3360.
[29] J. Otera, Chem. Rev. 93 (1993) 1449.
[30] Y. Patel, J. George, S.M. Pillai, P. Munshi, Green Chem. 11 (2009) 1056.
[31] P. Munshi, A. Ghosh, E.J. Beckman, Y. Patel, J. George, S.Z. Sullivan, S. Pulla, P.
Ramidi, V. Malpani, Green Chem. Lett. Rev. 3 (2010) 319.
[32] H.E. Hoydonckx, D.E.D. Vos, S.A. Chavan, P.A. Jacobs, Top. Catal. 27 (2004) 83.
[33] J. Otera, T. Yano, R. Okawara, Chem. Lett. (1985) 901.
[34] D.D. Perrin, W.L.F. Armarego, Purification of Laboratory Chemicals, 4th ed.,
Butterworth-Heinemann, 1997.
[35] J. George, Y. Patel, S. Pillai, P. Munshi, J. Mol. Catal. A: Chem 304 (2009) 1.
[36] D.A. Evans, J. Bartroli, T.L. Shih, J. Am. Chem. Soc. 103 (1981) 2127.
[37] E.N. Suuciu, B. Kuhlmann, G.A. Knudsen, R.C. Michaelson, J. Organomet. Chem.
556 (1998) 41.
Acknowledgements
[38] P.W. Atkins, Physical Chemistry, 3rd ed., Oxford University Press, 1985.
[39] C. Raymond, B. Cruickshank, Entropy Free Energy and Equilibrium in Chemistry,
8th ed., McGraw-Hill, Inc., 2005, p. 765.
[40] J.M. Harris, S.P. McManus, Nucleophilicity Advances in Chemistry Series, vol.
215, American Chemical Society, Washington, DC, 1987.
[41] B. Paizs, I. Pinter, J. Kovcs, W. Viviani, A. Marsura, P. Friant-Michel, I.G. Csizma-
dia, J. Mol. Struc. Theochem. 395 (1997) 41.
[42] P.G. Harrison, K. Molloy, J. Organomet. Chem. 152 (1978) 63.
[43] V.E. Bel’skii, L.S. Novikova, L.A. Kudryavtseva, B.E. Ivanov, Russ. Chem. Bull. 26
(1977) 1188.
AG likes to thank UALR faculty start up grant and the Department
of Energy (Grant number DE-FG36-06GO86072) for financial assis-
tances to complete the work. JLD greatly acknowledges financial
supports from the National Science Foundation, USA (Grant number
NSF DBIO722538) and the National Institute of Health, USA (Grant
number NIH RR11973).
[44] J.B. Conant, R.E. Hussey, J. Am. Chem. Soc. 47 (1925) 476.
[45] G. Socrates, Infrared and Raman Characteristic Group Frequencies, 3rd ed., John
Wiely & Sons, 2004.
[46] R. Okawara, M. Wada, in: F.G.A. Stone, R. West (Eds.), Structural Aspects of
Organotin Compounds in Advances in Organometallic Chemistry, vol. 5, Aca-
demic Press, New York/London, 1967.
[47] G.D. Yadav, A.D. Murkute, Adv. Synth. Catal. 346 (2004) 389.
[48] Y. Lu, L.H. Weng, Z.L. Lan, J. Li, Q.L. Xie, Chin. Chem. Lett. 13 (2002) 185.
[49] J.F. Vollano, R.O. Day, R.H. Holmes, Organometallics 3 (1984) 745.
[50] T. Yano, K. Nakashima, J. Otera, R. Okawars, Organometallics 4 (1985) 1501.
[51] D.C. Gross, Inorg. Chem. 28 (1989) 2355.
[52] R. Okawara, M. Wada, J. Organomet. Chem. 1 (1963) 81.
[53] S.G. Teoh, L.Y. Kok, E.S. Looi, J. Coord. Chem. 55 (2002) 697.
[54] A. Orita, J. Xiang, K. Sakamoto, J. Otera, J. Organomet. Chem. 624 (2001) 287.
[55] D. Ballivet-Tkatchenko, R.A. Ligabue, L. Plasseraud, Braz. J. Chem. Eng. 23 (2006)
111.
[56] K. Wakamatsu, A. Orita, J. Otera, Organometallics 27 (2008) 1092.
[57] J. Otera, T. Yano, R. Okawara, Organometallics 5 (1986) 1167.
[58] R.G. Pearson, J. Songstad, J. Am. Chem. Soc. 89 (1967) 1827.
[59] F.A. Carey, R.J. Sundburg, Advanced Organic chemistry Part A: Structure and
Mechanisms, 5th ed., Springer, 2007.
[60] V. Pinoie, K. Poelmans, H.E. Miltner, I. Verbruggen, M. Biesemans, G.V. Assche,
B.V. Mele, J.C. Martins, R. Willem, Organometallics 26 (2007) 6718.
[61] D. Deshayes, F.A.G. Mercier, P. Degee, I. Verbruggen, M. Biesemans, R. Willem,
P. Dubois, Chem. Eur. J. 9 (2003) 4346.
References
[1] S. Natesan, S. Deekonda, K.K. Manoj, et al., J. Med. Chem. 45 (2002) 3953.
[2] D.J. Diekema, R.N. Jones, Drugs 59 (2000) 7.
[3] R. Hoogenboom, F. Wiesbrock, U.S. Schubert, Polym. Mater.: Sci. Eng. 93 (2005)
894.
[4] S. Yian, US patent, 7,153,971 (2006).
[5] M.G. Madariaga, S. Swindells, Antimicrob. Agents Chemother. 51 (2007) 1130.
[6] B. Gabriele, G. Salerno, D. Brindisi, M. Costa, G.P. Chiusoli, Org. Lett. 2 (2000)
625.
[7] H. Matsuda, A. Baba, R. Nomufa, M. Korl, S. Ogawa, Ind. Eng. Chem. Prod. Res.
Dev. 24 (1985) 239.
[8] B.M. Bhanage, S. Fujita, Y. Ikushima, M. Arai, Green Chem. 5 (2003) 340.
[9] M. Shi, S. Yu-Mei, J. Org. Chem. 67 (2002) 16.
[10] M. Costa, G.P. Chiusoli, D. Taffurelli, G. Dalmonego, J. Chem. Soc., Perkin Trans.
1 (1998) 1541.
[11] R. Maggi, C. Bertolotti, E. Orlandini, C. Oro, G. Sartori, M. Selva, Tetrahedron Lett.
48 (2007) 2131.
[12] M.P. Sibi, D. Rutherford, R. Sharma, J. Chem. Soc., Perkin Trans. 1 (1994) 1675.
[13] R. Green, P.J.M. Taylor, S.D. Bull, T.D. James, M.F. Mahon, A.T. Merritt, Tetrahe-
dron: Asymmetry 14 (2003) 2619.
[14] T. Francis, M.P. Thorne, Can. J. Chem. 54 (1976) 24.
[15] A. Buzas, F. Gagosz, Synlett (2006) 2727.
[16] R.R. Machin, J. Adrio, J.C. Carretero, J. Org. Chem. 71 (2006) 5023.
[17] T. Munegumi, I. Azumaya, T. Kato, H. Masu, S. Saito, Org. Lett. 8 (2006) 379.
[18] G. Bratulescu, Synthesis (2007) 3111.
[62] B. Jousseaume, C. Laporte, M.C. Rascle, T. Toupance, Chem. Commun. (2003)
1428.
[19] N. Alouane, A. Boutier, C. Baron, E. Vrancken, P. Mangeney, Synthesis (2006)
860.