Journal of the American Chemical Society
Communication
Top. Catal. 2008, 48, 49−54. (l) Huber, G. W.; Chheda, J. N.; Barrett, C.
J.; Dumesic, J. A. Science 2005, 308, 1446−1450.
negligible isomerization, while water is the only byproduct.
Development of easily recyclable heterogeneous Hf catalysts is
underway, as well as extending the chemistry to “green” catalytic
synthetic methods of C−O cleavage and further transformations.
(3) Furimsky, E. Appl. Catal., A 2000, 199, 147−190.
(4) Alonso, D. M.; Wettstein, S. G.; Dumesic, J. A. Chem. Soc. Rev.
2012, 41, 8075−8098.
(5) (a) Zhao, C.; He, J.; Lemonidou, A. A.; Li, X.; Lercher, J. A. J. Catal.
2011, 280, 8−16. (b) Geboers, J.; Van de Vyver, S.; Carpentier, K.; de
Blochouse, K.; Jacobs, P.; Sels, B. Chem. Commun. 2010, 46, 3577−3579.
(c) Zhao, C.; Kou, Y.; Lemonidou, A. A.; Li, X.; Lercher, J. A. Angew.
Chem., Int. Ed. 2009, 48, 3987−3990.
(6) (a) Geboers, J.; Van de Vyver, S.; Carpentier, K.; Jacobs, P.; Sels, B.
Green Chem. 2011, 13, 2167−2174. (b) Yan, N.; Yuan, Y.; Dykeman, R.;
Kou, Y.; Dyson, P. J. Angew. Chem., Int. Ed. 2010, 49, 5549−5553.
(c) Zhao, C.; Kou, Y.; Lemonidou, A. A.; Li, X.; Lercher, J. A. Chem.
Commun. 2010, 46, 412−4. (d) Serrano-Ruiz, J. C.; Dumesic, J. A. Green
Chem. 2009, 11, 1101−1104.
(7) (a) Shin, J. Y.; Jung, D. J.; Lee, S.-G. ACS Catal. 2013, 3, 525−528.
(b) Parsell, T. H.; Owen, B. C.; Klein, I.; Jarrell, T. M.; Marcum, C. L.;
Haupert, L. J.; Amundson, L. M.; Kenttamaa, H. I.; Ribeiro, F.; Miller, J.
T.; Abu-Omar, M. M. Chem. Sci. 2013, 4, 806−813. (c) Wang, F.; Shi, A.-
W.; Qin, X.-X.; Liu, C.-L.; Dong, W.-S. Carbohydr. Res. 2011, 346, 982−
985. (d) Liu, H.; Jiang, T.; Han, B.; Liang, S.; Zhou, Y. Science 2009, 326,
1250−1252.
(8) (a) Qin, H.; Yamagiwa, N.; Matsunaga, S.; Shibasaki, M. Chem.
Asian J. 2007, 2, 150−154. (b) Luo, S.; Zhu, L.; Talukdar, A.; Zhang, G.;
Mi, X.; Cheng, J.-P.; Wang, P. G. Mini Rev. Org. Chem. 2005, 2, 177−202.
(c) Kobayashi, S.; Sugiura, M.; Kitagawa, H.; Lam, W. W. L. Chem. Rev.
2002, 102, 2227−2302.
(9) (a) Williams, D. B. G.; Sibiya, M. S.; van Heerden, P. S. Fuel Process.
Technol. 2012, 94, 75−79. (b) Noji, M.; Ohno, T.; Fuji, K.; Futaba, N.;
Tajima, H.; Ishii, K. J. Org. Chem. 2003, 68, 9340−9347.
(10) Dzudza, A.; Marks, T. J. J. Org. Chem. 2008, 73, 4004−4016.
(11) (a) Dzudza, A.; Marks, T. J. Chem.Eur. J. 2010, 16, 3403−3422.
(b) Dzudza, A.; Marks, T. J. Org. Lett. 2009, 11, 1523−1526.
(12) Atesin, A. C.; Ray, N. A.; Stair, P. C.; Marks, T. J. J. Am. Chem. Soc.
2012, 134, 14682−14685.
(13) Lu, J.; Stair, P. C. Langmuir 2010, 26, 16486−16495.
(14) Assary, R. S.; Atesin, A. C.; Li, Z.; Curtiss, L. A.; Marks, T. J. ACS
Catal. 2013, 3, 1908−1914.
(15) Details of computational methods, computation of effective
charge density of various metal centers, modeling of the catalytic active
sites, and optimized three-dimensional structures of the intermediates
can be found in the Supporting Information.
(16) Zelinsky, N. D.; Lewina, R. J. Chem. Ber 1929, 62, 339−343.
(17) (a) Gurrath, M.; Kuretzky, T.; Boehm, H. P.; Okhlopkova, L. B.;
Lisitsyn, A. S.; Likholobov, V. A. Carbon 2000, 38, 1241−1255.
(b) Molzingo, R. Org. Synth. 1946, 26, 77.
(18) Horsley, L. H. Azeotropic Data, III; American Chemical Society:
Washington, DC, 1973.
(19) Julis, J.; Leitner, W. Angew. Chem., Int. Ed. 2012, 51, 8615−8619.
(20) Sato, S.; Takahashi, R.; Yamamoto, N.; Kaneko, E.; Inoue, H.
Appl. Catal. A: Gen. 2008, 334, 84−91.
(21) Results of recycling experiments are summarized in Table S1 of
the Supporting Information. Pd/C is known to degrade and lose activity
under acidic conditions.23 Successful examples of recycling bifunctional
Lewis acid + Pd/C catalysts are reported at reaction temperatures of
20−30 °C.7a,d At higher reaction temperatures, such catalysts are
reported to not be recyclable,7a to gradually lose activity,5a or to be
recyclable,7b possibly reflecting different reaction procedures.
(22) Since the experiments and calculations are performed on
somewhat different model substrates and there are many practical
factors that affect the experiment, the calculated barriers are better
understood as qualitative trends rather than quantitative predictions of
reactivities.
(23) (a) Tarasevich, M. R.; Novikov, D. V.; Zhutaeva, G. V.;
Bogdanovskaya, V. A.; Reznikova, L. A.; Kapustina, N. A.; Batrakov, V.
V. Proteins Met. Phys. Chem. Surf. 2009, 45, 782−786. (b) Hoke, J. B.;
Gramiccioni, G. A.; Balko, E. N. Appl. Catal. B: Environ. 1992, 1, 285−
296.
ASSOCIATED CONTENT
* Supporting Information
Experimental details, product characterizations, detailed compu-
tational results, and discussions. This material is available free of
■
S
AUTHOR INFORMATION
Corresponding Author
Notes
■
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by the U.S. Department of Energy
under contract DE-AC0206CH11357. This material is based
upon work supported as part of the Institute of Atom Efficient
Chemical Transformation (IACT), an Energy Frontier Research
Center funded by the U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences. NSF grant CHE-
1213235 on basic f-element chemistry supported Z.L. and
provided reactor equipment. We gratefully acknowledge the
computing resources provided on “Fusion”, a 320-node
computing cluster operated by the Laboratory Computing
Resource Center at Argonne National Laboratory. Use of the
Center for Nanoscale Materials was supported by the U.S.
Department of Energy, Office of Science, Office of Basic Energy
Sciences, under Contract No. DE-AC02-06CH11357. This
research used resources of the National Energy Research
Scientific Computing Center (NERSC), which is supported by
the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231.
REFERENCES
(1) For recent excellent reviews, see: (a) Tuck, C. O.; Per
■
́
ez, E.;
Horvat
́
h, I. T.; Sheldon, R. A.; Poliakoff, M. Science 2012, 337, 695−699.
(b) Gallezot, P. Chem. Soc. Rev. 2012, 41, 1538−1558. (c) Geboers, J. A.;
Van de Vyver, S.; Ooms, R.; Op de Beeck, B.; Jacobs, P. A.; Sels, B. F.
Catal. Sci. Technol. 2011, 1, 714−726. (d) Van de Vyver, S.; Geboers, J.;
Jacobs, P. A.; Sels, B. F. ChemCatChem 2011, 3, 82−94. (e) Zakzeski, J.;
Bruijnincx, P. C. A.; Jongerius, A. L.; Weckhuysen, B. M. Chem. Rev.
2010, 110, 3552−3599. (f) Alonso, D. M.; Bond, J. Q.; Dumesic, J. A.
Green Chem. 2010, 12, 1493−1513. (g) Schlaf, M. Dalton Trans. 2006,
4645−4653. (h) Huber, G. W.; Iborra, S.; Corma, A. Chem. Rev. 2006,
106, 4044−4098.
(2) For recent reports, see: (a) Sutton, A. D.; Waldie, F. D.; Wu, R.;
Schlaf, M.; Silks, L. A.; Gordon, J. C. Nat. Chem. 2013, 5, 428−432.
(b) McLaughlin, M. P.; Adduci, L. L.; Becker, J. J.; Gagne, M. R. J. Am.
́
Chem. Soc. 2013, 135, 1225−1227. (c) Corma, A.; de la Torre, O.; Renz,
M. Energy Environ. Sci. 2012, 5, 6328−6344. (d) Li, G.; Li, N.; Wang, Z.;
Li, C.; Wang, A.; Wang, X.; Cong, Y.; Zhang, T. ChemSusChem 2012, 5,
1958−1966. (e) Corma, A.; de la Torre, O.; Renz, M. ChemSusChem
2011, 4, 1574−1577. (f) Corma, A.; de la Torre, O.; Renz, M.;
Villandier, N. Angew. Chem., Int. Ed. 2011, 50, 2375−2378. (g) Chia, M.;
́
Pagan-Torres, Y. J.; Hibbitts, D.; Tan, Q.; Pham, H. N.; Datye, A. K.;
Neurock, M.; Davis, R. J.; Dumesic, J. A. J. Am. Chem. Soc. 2011, 133,
12675−12689. (h) Li, N.; Tompsett, G. A.; Huber, G. W. ChemSusChem
2010, 3, 1154−1157. (i) Li, N.; Huber, G. W. J. Catal. 2010, 270, 48−59.
(j) Xing, R.; Subrahmanyam, A. V.; Olcay, H.; Qi, W.; van Walsum, G.
P.; Pendse, H.; Huber, G. W. Green Chem. 2010, 12, 1933−1946.
́ ́
(k) Mehdi, H.; Fabos, V.; Tuba, R.; Bodor, A.; Mika, L. T.; Horvath, I. T.
D
dx.doi.org/10.1021/ja411546r | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX